QREigenComponentExtractor.java
- package org.drip.numerical.eigen;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>QREigenComponentExtractor</i> extracts the Eigenvalues and Eigenvectors using QR Decomposition.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/eigen">QR PICE Eigen-Component Extraction Methodologies</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class QREigenComponentExtractor
- implements org.drip.numerical.eigen.ComponentExtractor
- {
- private int _maxIterations = -1;
- private double _tolerance = java.lang.Double.NaN;
- /**
- * QREigenComponentExtractor Constructor
- *
- * @param maxIterations Maximum Number of Iterations
- * @param tolerance Tolerance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public QREigenComponentExtractor (
- final int maxIterations,
- final double tolerance)
- throws java.lang.Exception
- {
- if (0 >= (_maxIterations = maxIterations) ||
- !org.drip.numerical.common.NumberUtil.IsValid (
- _tolerance = tolerance
- ) || 0. == _tolerance
- )
- {
- throw new java.lang.Exception ("QREigenComponentExtractor ctr: Invalid Inputs!");
- }
- }
- /**
- * Retrieve the Maximum Number of Iterations
- *
- * @return The Maximum Number of Iterations
- */
- public int maxIterations()
- {
- return _maxIterations;
- }
- /**
- * Retrieve the Tolerance Level
- *
- * @return The Tolerance Level
- */
- public double tolerance()
- {
- return _tolerance;
- }
- @Override public org.drip.numerical.eigen.EigenOutput eigenize (
- final double[][] a)
- {
- org.drip.numerical.linearalgebra.QR qr = org.drip.numerical.linearalgebra.Matrix.QRDecomposition (
- a
- );
- if (null == qr)
- {
- return null;
- }
- double[][] q = qr.q();
- double[][] qTranspose = org.drip.numerical.linearalgebra.Matrix.Transpose (
- q
- );
- if (null == qTranspose)
- {
- return null;
- }
- int iterationIndex = 0;
- int eigenComponentCount = a.length;
- double[] eigenvalueArray = new double[eigenComponentCount];
- double[][] b = new double[eigenComponentCount][eigenComponentCount];
- double[][] v = new double[eigenComponentCount][eigenComponentCount];
- if (0 == eigenComponentCount || null == qTranspose[0] || eigenComponentCount != qTranspose[0].length)
- {
- return null;
- }
- for (int rowIndex = 0;
- rowIndex < eigenComponentCount;
- ++rowIndex)
- {
- for (int columnIndex = 0;
- columnIndex < eigenComponentCount;
- ++columnIndex)
- {
- b[rowIndex][columnIndex] = q[rowIndex][columnIndex];
- v[rowIndex][columnIndex] = a[rowIndex][columnIndex];
- }
- }
- while (iterationIndex++ < _maxIterations &&
- org.drip.numerical.linearalgebra.Matrix.NON_TRIANGULAR ==
- org.drip.numerical.linearalgebra.Matrix.TriangularType (
- v,
- _tolerance
- )
- )
- {
- if (null == (qr = org.drip.numerical.linearalgebra.Matrix.QRDecomposition (
- v = org.drip.numerical.linearalgebra.Matrix.Product (
- qTranspose,
- org.drip.numerical.linearalgebra.Matrix.Product (
- v,
- q
- )
- )
- )))
- {
- return null;
- }
- qTranspose = org.drip.numerical.linearalgebra.Matrix.Transpose (
- q = qr.q()
- );
- b = org.drip.numerical.linearalgebra.Matrix.Product (
- b,
- q
- );
- }
- if (iterationIndex >= _maxIterations)
- {
- return null;
- }
- for (int rowIndex = 0;
- rowIndex < eigenComponentCount;
- ++rowIndex)
- {
- eigenvalueArray[rowIndex] = v[rowIndex][rowIndex];
- }
- try
- {
- return new org.drip.numerical.eigen.EigenOutput (
- org.drip.numerical.linearalgebra.Matrix.Transpose (
- b
- ),
- eigenvalueArray
- );
- } catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Ordered List of Eigenvalues for the specified Eigen-output
- *
- * @param eigenOutput The Eigen Output
- *
- * @return The Order List
- */
- public java.util.List<java.lang.Integer> eigenComponentOrderList (
- final org.drip.numerical.eigen.EigenOutput eigenOutput)
- {
- if (null == eigenOutput)
- {
- return null;
- }
- double[] eigenvalueArray = eigenOutput.eigenValueArray();
- int eigenComponentCount = eigenvalueArray.length;
- java.util.List<java.lang.Double> eigenValueList = new java.util.ArrayList<java.lang.Double>();
- java.util.List<java.lang.Integer> eigenValueOrder = new java.util.ArrayList<java.lang.Integer>();
- for (int eigenComponentIndex = 0;
- eigenComponentIndex < eigenComponentCount;
- ++eigenComponentIndex)
- {
- int eigenValueOrderSize = eigenValueOrder.size();
- if (0 == eigenValueOrderSize)
- {
- eigenValueOrder.add (
- eigenComponentIndex
- );
- eigenValueList.add (
- eigenvalueArray[eigenComponentIndex]
- );
- }
- else
- {
- int insertionIndex = 0;
- for (int eigenValueOrderIndex = 0;
- eigenValueOrderIndex < eigenValueOrderSize;
- ++eigenValueOrderIndex)
- {
- if (eigenvalueArray[eigenComponentIndex] <= eigenValueList.get (
- eigenValueOrderIndex
- ))
- {
- insertionIndex = eigenValueOrderIndex;
- break;
- }
- }
- eigenValueOrder.add (
- insertionIndex,
- eigenComponentIndex
- );
- eigenValueList.add (
- insertionIndex,
- eigenvalueArray[eigenComponentIndex]
- );
- }
- }
- return eigenValueOrder;
- }
- /**
- * Generate the Ordered List of Eigen Components arranged by Ascending Eigenvalue
- *
- * @param a Input Matrix
- *
- * @return The Ordered List of Eigen Components arranged by Ascending Eigenvalue
- */
- public org.drip.numerical.eigen.EigenComponent[] orderedEigenComponentArray (
- final double[][] a)
- {
- org.drip.numerical.eigen.EigenOutput eigenOutput = eigenize (
- a
- );
- java.util.List<java.lang.Integer> eigenComponentOrderList = eigenComponentOrderList (
- eigenOutput
- );
- if (null == eigenComponentOrderList)
- {
- return null;
- }
- double[] eigenValueArray = eigenOutput.eigenValueArray();
- double[][] eigenVectorArray = eigenOutput.eigenVectorArray();
- int eigenComponentCount = eigenComponentOrderList.size();
- org.drip.numerical.eigen.EigenComponent[] eigenComponentArray =
- new org.drip.numerical.eigen.EigenComponent[eigenComponentCount];
- for (int eigenComponentIndex = 0;
- eigenComponentIndex < eigenComponentCount;
- ++eigenComponentIndex)
- {
- int eigenComponentOrder = eigenComponentOrderList.get (
- eigenComponentIndex
- );
- try
- {
- eigenComponentArray[eigenComponentIndex] = new org.drip.numerical.eigen.EigenComponent (
- eigenVectorArray[eigenComponentOrder],
- eigenValueArray[eigenComponentOrder]
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- }
- return eigenComponentArray;
- }
- @Override public org.drip.numerical.eigen.EigenComponent principalComponent (
- final double[][] a)
- {
- org.drip.numerical.eigen.EigenComponent[] eigenComponentArray = orderedEigenComponentArray (
- a
- );
- return null == eigenComponentArray ? null : eigenComponentArray[0];
- }
- /**
- * Generate the UD Form of the Input Matrix
- *
- * @param a The Input Matrix
- *
- * @return The UD Form
- */
- public org.drip.numerical.linearalgebra.UD udForm (
- final double[][] a)
- {
- org.drip.numerical.eigen.EigenComponent[] eigenComponentArray = orderedEigenComponentArray (
- a
- );
- if (null == eigenComponentArray)
- {
- return null;
- }
- int eigenComponentCount = eigenComponentArray.length;
- double[][] d = new double[eigenComponentCount][eigenComponentCount];
- double[][] u = new double[eigenComponentCount][];
- for (int eigenComponentIndexI = 0;
- eigenComponentIndexI < eigenComponentCount;
- ++eigenComponentIndexI)
- {
- u[eigenComponentIndexI] = eigenComponentArray[eigenComponentIndexI].eigenVector();
- for (int eigenComponentIndexJ = 0;
- eigenComponentIndexJ < eigenComponentCount;
- ++eigenComponentIndexJ)
- {
- d[eigenComponentIndexI][eigenComponentIndexJ] = eigenComponentIndexI != eigenComponentIndexJ
- ? 0. : eigenComponentArray[eigenComponentIndexI].eigenValue();
- }
- }
- try
- {
- return new org.drip.numerical.linearalgebra.UD (
- u,
- d
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }