R1Estimate.java

  1. package org.drip.numerical.estimation;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1Estimate</i> holds the Bounded R<sup>1</sup> Numerical Estimate of a Function. The References are:
  76.  *
  77.  * <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function <i>Computers and
  81.  *              Mathematics with Applications</i> <b>61 (11)</b> 3364-3369
  82.  *      </li>
  83.  *      <li>
  84.  *          National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical
  85.  *              Functions https://dlmf.nist.gov/5.11
  86.  *      </li>
  87.  *      <li>
  88.  *          Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n!
  89.  *              https://arxiv.org/abs/1003.2907 <b>arXiv</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Toth V. T. (2016): Programmable Calculators – The Gamma Function
  93.  *              http://www.rskey.org/CMS/index.php/the-library/11
  94.  *      </li>
  95.  *      <li>
  96.  *          Wikipedia (2019): Stirling's Approximation
  97.  *              https://en.wikipedia.org/wiki/Stirling%27s_approximation
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/estimation/README.md">Function Numerical Estimates/Corrections/Bounds</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public class R1Estimate
  112. {
  113.     private double _baseline = java.lang.Double.NaN;
  114.     private double _lowerBound = java.lang.Double.NaN;
  115.     private double _upperBound = java.lang.Double.NaN;

  116.     private java.util.Map<java.lang.Integer, java.lang.Double> _orderedSeriesMap = new
  117.         java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  118.     /**
  119.      * Construct a Base Line Version without Bounds
  120.      *
  121.      * @param baseline The Base Line Numerical Estimate
  122.      *
  123.      * @return The Base Line Version without Bounds
  124.      */

  125.     public static final R1Estimate BaselineOnly (
  126.         final double baseline)
  127.     {
  128.         try
  129.         {
  130.             return new R1Estimate (
  131.                 baseline,
  132.                 java.lang.Double.NaN,
  133.                 java.lang.Double.NaN
  134.             );
  135.         }
  136.         catch (java.lang.Exception e)
  137.         {
  138.             e.printStackTrace();
  139.         }

  140.         return null;
  141.     }

  142.     /**
  143.      * R1Estimate Constructor
  144.      *
  145.      * @param baseline The Base Line Estimate
  146.      * @param lowerBound The Lower Bound
  147.      * @param upperBound The Upper Bound
  148.      *
  149.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  150.      */

  151.     public R1Estimate (
  152.         final double baseline,
  153.         final double lowerBound,
  154.         final double upperBound)
  155.         throws java.lang.Exception
  156.     {
  157.         if (!org.drip.numerical.common.NumberUtil.IsValid (_baseline = baseline))
  158.         {
  159.             throw new java.lang.Exception ("R1Estimate Constructor => Invalid Inputs");
  160.         }

  161.         _lowerBound = lowerBound;
  162.         _upperBound = upperBound;
  163.     }

  164.     /**
  165.      * Retrieve the Base Line Numerical Estimate
  166.      *
  167.      * @return The Base Line Numerical Estimate
  168.      */

  169.     public double baseline()
  170.     {
  171.         return _baseline;
  172.     }

  173.     /**
  174.      * Retrieve the Lower Bound
  175.      *
  176.      * @return The Lower Bound
  177.      */

  178.     public double lowerBound()
  179.     {
  180.         return _lowerBound;
  181.     }

  182.     /**
  183.      * Retrieve the Upper Bound
  184.      *
  185.      * @return The Upper Bound
  186.      */

  187.     public double upperBound()
  188.     {
  189.         return _upperBound;
  190.     }

  191.     /**
  192.      * Retrieve the Higher Order Series Map
  193.      *
  194.      * @return The Higher Order Series Map
  195.      */

  196.     public java.util.Map<java.lang.Integer, java.lang.Double> orderedSeriesMap()
  197.     {
  198.         return _orderedSeriesMap;
  199.     }

  200.     /**
  201.      * Add the Ordered Series Map
  202.      *
  203.      * @param orderedSeriesMap The Ordered Series Map
  204.      *
  205.      * @return TRUE - The Ordered Series Map successfully added
  206.      */

  207.     public boolean addOrderedSeriesMap (
  208.         final java.util.Map<java.lang.Integer, java.lang.Double> orderedSeriesMap)
  209.     {
  210.         if (null == orderedSeriesMap)
  211.         {
  212.             return false;
  213.         }

  214.         _orderedSeriesMap = orderedSeriesMap;
  215.         return true;
  216.     }

  217.     /**
  218.      * Retrieve the Series corresponding to the Specified Order
  219.      *
  220.      * @param order The Series Order
  221.      *
  222.      * @return The Series corresponding to the Specified Order
  223.      */

  224.     public double orderSeries (
  225.         final int order)
  226.     {
  227.         return _orderedSeriesMap.containsKey (order) ? _orderedSeriesMap.get (order) : 0.;
  228.     }

  229.     /**
  230.      * Compute the Series Cumulative
  231.      *
  232.      * @return The Series Cumulative
  233.      */

  234.     public double seriesCumulative()
  235.     {
  236.         double seriesCumulative = 0.;

  237.         for (java.util.Map.Entry<java.lang.Integer, java.lang.Double> orderedSeriesEntry :
  238.             _orderedSeriesMap.entrySet())
  239.         {
  240.             seriesCumulative = seriesCumulative + orderedSeriesEntry.getValue();
  241.         }

  242.         return seriesCumulative;
  243.     }
  244. }