R1ToR1Estimator.java

  1. package org.drip.numerical.estimation;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R1ToR1Estimator</i> exposes the Stubs behind R<sup>1</sup> - R<sup>1</sup> Approximate Numerical
  76.  * Estimators. The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function <i>Computers and
  82.  *              Mathematics with Applications</i> <b>61 (11)</b> 3364-3369
  83.  *      </li>
  84.  *      <li>
  85.  *          National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical
  86.  *              Functions https://dlmf.nist.gov/5.11
  87.  *      </li>
  88.  *      <li>
  89.  *          Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n!
  90.  *              https://arxiv.org/abs/1003.2907 <b>arXiv</b>
  91.  *      </li>
  92.  *      <li>
  93.  *          Toth V. T. (2016): Programmable Calculators – The Gamma Function
  94.  *              http://www.rskey.org/CMS/index.php/the-library/11
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Stirling's Approximation
  98.  *              https://en.wikipedia.org/wiki/Stirling%27s_approximation
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/estimation/README.md">Function Numerical Estimates/Corrections/Bounds</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public abstract class R1ToR1Estimator extends org.drip.function.definition.R1ToR1
  113. {

  114.     /**
  115.      * R<sup>1</sup> - R<sup>1</sup> Estimator Constructor
  116.      *
  117.      * @param dc The Derivative Control
  118.      */

  119.     public R1ToR1Estimator (
  120.         final org.drip.numerical.differentiation.DerivativeControl dc)
  121.     {
  122.         super (dc);
  123.     }

  124.     /**
  125.      * Estimate a Bounded Numerical Approximation of the Function Value
  126.      *
  127.      * @param x X
  128.      *
  129.      * @return The Bounded Numerical Approximation
  130.      */

  131.     public org.drip.numerical.estimation.R1Estimate boundedEstimate (
  132.         final double x)
  133.     {
  134.         try
  135.         {
  136.             return org.drip.numerical.estimation.R1Estimate.BaselineOnly (evaluate (x));
  137.         }
  138.         catch (java.lang.Exception e)
  139.         {
  140.             e.printStackTrace();
  141.         }

  142.         return null;
  143.     }

  144.     /**
  145.      * Compute the Higher Order Series Estimates
  146.      *
  147.      * @param x X
  148.      * @param termWeightMap Error Term Weight Map
  149.      * @param r1ToR1SeriesGenerator R<sup>1</sup> To R<sup>1</sup> Series Generator
  150.      *
  151.      * @return The Higher Order Series Estimates
  152.      */

  153.     public org.drip.numerical.estimation.R1Estimate seriesEstimate (
  154.         final double x,
  155.         final java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap,
  156.         final org.drip.numerical.estimation.R1ToR1Series r1ToR1SeriesGenerator)
  157.     {
  158.         org.drip.numerical.estimation.R1Estimate r1NumericalEstimate = boundedEstimate (x);

  159.         if (null == r1NumericalEstimate ||
  160.             null == termWeightMap || 0 == termWeightMap.size() ||
  161.             null == r1ToR1SeriesGenerator)
  162.         {
  163.             return r1NumericalEstimate;
  164.         }

  165.         return r1NumericalEstimate.addOrderedSeriesMap (
  166.             r1ToR1SeriesGenerator.generate (
  167.                 r1NumericalEstimate.baseline(),
  168.                 x
  169.             )
  170.         ) ? r1NumericalEstimate : null;
  171.     }

  172.     /**
  173.      * Compute the Built-in Higher Order Series Estimates
  174.      *
  175.      * @param x X
  176.      *
  177.      * @return The Built-in Higher Order Series Estimates
  178.      */

  179.     public org.drip.numerical.estimation.R1Estimate seriesEstimateNative (
  180.         final double x)
  181.     {
  182.         return seriesEstimate (
  183.             x,
  184.             null,
  185.             null
  186.         );
  187.     }
  188. }