R2ToR1Series.java

  1. package org.drip.numerical.estimation;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>R2ToR1Series</i> holds the R<sup>2</sup> To R<sup>1</sup> Expansion Terms in the Ordered Series of the
  76.  * Numerical Estimate for a Function. The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions <b>Dover Book on
  82.  *              Mathematics</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Blagouchine, I. V. (2018): Three Notes on Ser's and Hasse's Representations for the
  86.  *              Zeta-Functions https://arxiv.org/abs/1606.02044 <b>arXiv</b>
  87.  *      </li>
  88.  *      <li>
  89.  *          Mezo, I., and M. E. Hoffman (2017): Zeros of the Digamma Function and its Barnes G-function
  90.  *              Analogue <i>Integral Transforms and Special Functions</i> <b>28 (28)</b> 846-858
  91.  *      </li>
  92.  *      <li>
  93.  *          Whitaker, E. T., and G. N. Watson (1996): <i>A Course on Modern Analysis</i> <b>Cambridge
  94.  *              University Press</b> New York
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Digamma Function https://en.wikipedia.org/wiki/Digamma_function
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/estimation/README.md">Function Numerical Estimates/Corrections/Bounds</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public class R2ToR1Series
  112. {
  113.     private boolean _proportional = false;
  114.     private org.drip.numerical.estimation.R2ToR1SeriesTerm _r2ToR1SeriesTerm = null;
  115.     private java.util.TreeMap<java.lang.Integer, java.lang.Double> _termWeightMap = null;

  116.     /**
  117.      * R2ToR1Series Constructor
  118.      *
  119.      * @param r2ToR1SeriesTerm R<sup>2</sup> To R<sup>1</sup> Series Expansion Term
  120.      * @param proportional TRUE - The Expansion Term is Proportional
  121.      * @param termWeightMap Error Term Weight Map
  122.      *
  123.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  124.      */

  125.     public R2ToR1Series (
  126.         final org.drip.numerical.estimation.R2ToR1SeriesTerm r2ToR1SeriesTerm,
  127.         final boolean proportional,
  128.         final java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap)
  129.         throws java.lang.Exception
  130.     {
  131.         _proportional = proportional;
  132.         _termWeightMap = termWeightMap;

  133.         if (null == (_r2ToR1SeriesTerm = r2ToR1SeriesTerm))
  134.         {
  135.             throw new java.lang.Exception ("R2ToR1Series Constructor => Invalid Inputs");
  136.         }
  137.     }

  138.     /**
  139.      * Retrieve the R<sup>2</sup> To R<sup>1</sup> Series Expansion Term
  140.      *
  141.      * @return The R<sup>2</sup> To R<sup>1</sup> Series Expansion Term
  142.      */

  143.     public org.drip.numerical.estimation.R2ToR1SeriesTerm r1ToR1SeriesTerm()
  144.     {
  145.         return _r2ToR1SeriesTerm;
  146.     }

  147.     /**
  148.      * Indicate if the R<sup>x</sup> To R<sup>1</sup> Series Expansion Term is Proportional
  149.      *
  150.      * @return TRUE - The R<sup>x</sup> To R<sup>1</sup> Series Expansion Term is Proportional
  151.      */

  152.     public boolean proportional()
  153.     {
  154.         return _proportional;
  155.     }

  156.     /**
  157.      * Retrieve the R<sup>x</sup> To R<sup>1</sup> Series Expansion Term Weight Map
  158.      *
  159.      * @return The R<sup>x</sup> To R<sup>1</sup> Series Expansion Term Weight Map
  160.      */

  161.     public java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap()
  162.     {
  163.         return _termWeightMap;
  164.     }

  165.     /**
  166.      * Generate the R<sup>2</sup> To R<sup>1</sup> Series Expansion using the Term
  167.      *
  168.      * @param zeroOrder The Zero Order Estimate
  169.      * @param x X
  170.      * @param y Y
  171.      *
  172.      * @return The R<sup>2</sup> To R<sup>1</sup> Series Expansion
  173.      */

  174.     public java.util.TreeMap<java.lang.Integer, java.lang.Double> generate (
  175.         final double zeroOrder,
  176.         final double x,
  177.         final double y)
  178.     {
  179.         if (!org.drip.numerical.common.NumberUtil.IsValid (zeroOrder))
  180.         {
  181.             return null;
  182.         }

  183.         java.util.TreeMap<java.lang.Integer, java.lang.Double> seriesExpansionMap = new
  184.             java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  185.         if (null == _termWeightMap || 0 == _termWeightMap.size())
  186.         {
  187.             return seriesExpansionMap;
  188.         }

  189.         double scale = _proportional ? zeroOrder : 1.;

  190.         for (java.util.Map.Entry<java.lang.Integer, java.lang.Double> termWeightEntry :
  191.             _termWeightMap.entrySet())
  192.         {
  193.             int order = termWeightEntry.getKey();

  194.             try
  195.             {
  196.                 seriesExpansionMap.put (
  197.                     order,
  198.                     scale * termWeightEntry.getValue() * _r2ToR1SeriesTerm.value (
  199.                         order,
  200.                         x,
  201.                         y
  202.                     )
  203.                 );
  204.             }
  205.             catch (java.lang.Exception e)
  206.             {
  207.                 e.printStackTrace();

  208.                 return null;
  209.             }
  210.         }

  211.         return seriesExpansionMap;
  212.     }

  213.     /**
  214.      * Compute the Cumulative Series Value
  215.      *
  216.      * @param zeroOrder The Zero Order Estimate
  217.      * @param x X
  218.      * @param y Y
  219.      *
  220.      * @return The Cumulative Series Value
  221.      *
  222.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  223.      */

  224.     public double cumulative (
  225.         final double zeroOrder,
  226.         final double x,
  227.         final double y)
  228.         throws java.lang.Exception
  229.     {
  230.         java.util.TreeMap<java.lang.Integer, java.lang.Double> seriesMap = generate (
  231.             zeroOrder,
  232.             x,
  233.             y
  234.         );

  235.         if (null == seriesMap)
  236.         {
  237.             throw new java.lang.Exception ("R2ToR1Series::cumulative => Invalid Inputs");
  238.         }

  239.         double cumulative = 0.;

  240.         for (java.util.Map.Entry<java.lang.Integer, java.lang.Double> seriesEntry : seriesMap.entrySet())
  241.         {
  242.             cumulative = cumulative + seriesEntry.getValue();
  243.         }

  244.         return cumulative;
  245.     }

  246.     /**
  247.      * Evaluate for the given x, y
  248.      *
  249.      * @param x X
  250.      * @param y Y
  251.      *  
  252.      * @return Returns the calculated value
  253.      *
  254.      * @throws java.lang.Exception Thrown if evaluation cannot be done
  255.      */

  256.     public double evaluate (
  257.         final double x,
  258.         final double y)
  259.         throws java.lang.Exception
  260.     {
  261.         if (null == _termWeightMap || 0 == _termWeightMap.size())
  262.         {
  263.             return 0.;
  264.         }

  265.         double value = 0.;
  266.         double scale = _proportional ? 0. : 1.;

  267.         for (java.util.Map.Entry<java.lang.Integer, java.lang.Double> termWeightEntry :
  268.             _termWeightMap.entrySet())
  269.         {
  270.             value = value + scale * termWeightEntry.getValue() * _r2ToR1SeriesTerm.value (
  271.                 termWeightEntry.getKey(),
  272.                 x,
  273.                 y
  274.             );
  275.         }

  276.         return value;
  277.     }
  278. }