AbscissaTransform.java

  1. package org.drip.numerical.integration;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>AbscissaTransform</i> transforms the Abscissa over into Corresponding Integrand Variable. The
  76.  * References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Briol, F. X., C. J. Oates, M. Girolami, and M. A. Osborne (2015): <i>Frank-Wolfe Bayesian
  82.  *              Quadrature: Probabilistic Integration with Theoretical Guarantees</i> <b>arXiv</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Forsythe, G. E., M. A. Malcolm, and C. B. Moler (1977): <i>Computer Methods for Mathematical
  86.  *              Computation</i> <b>Prentice Hall</b> Englewood Cliffs NJ
  87.  *      </li>
  88.  *      <li>
  89.  *          Leader, J. J. (2004): <i>Numerical Analysis and Scientific Computation</i> <b>Addison Wesley</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Stoer, J., and R. Bulirsch (1980): <i>Introduction to Numerical Analysis</i>
  93.  *              <b>Springer-Verlag</b> New York
  94.  *      </li>
  95.  *      <li>
  96.  *          Wikipedia (2019): Numerical Integration https://en.wikipedia.org/wiki/Numerical_integration
  97.  *      </li>
  98.  *  </ul>
  99.  *
  100.  *  <br><br>
  101.  *  <ul>
  102.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  103.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  104.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  105.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/integration/README.md">R<sup>1</sup> R<sup>d</sup> Numerical Integration Schemes</a></li>
  106.  *  </ul>
  107.  *
  108.  * @author Lakshmi Krishnamurthy
  109.  */

  110. public class AbscissaTransform
  111. {
  112.     private double _quadratureScale = java.lang.Double.NaN;
  113.     private org.drip.function.definition.R1ToR1 _r1PointValueScale = null;
  114.     private org.drip.function.definition.R1ToR1 _r1ToR1VariateChange = null;

  115.     /**
  116.      * Generate the Scaled and Displaced Abscissa Transform from (left, right) To (0, +1)
  117.      *
  118.      * @param left Span Left
  119.      * @param right Span Right
  120.      *
  121.      * @return The Scaled and Displaced Abscissa Transform from (left, right) To (0, +1)
  122.      */

  123.     public static final AbscissaTransform DisplaceAndScaleZero_PlusOne (
  124.         final double left,
  125.         final double right)
  126.     {
  127.         if (!org.drip.numerical.common.NumberUtil.IsValid (left) ||
  128.             !org.drip.numerical.common.NumberUtil.IsValid (right))
  129.         {
  130.             return null;
  131.         }

  132.         try
  133.         {
  134.             return new AbscissaTransform (
  135.                 new org.drip.function.definition.R1ToR1 (null)
  136.                 {
  137.                     @Override public double evaluate (
  138.                         final double x)
  139.                     {
  140.                         return (right - left) * x + left;
  141.                     }
  142.                 },
  143.                 new org.drip.function.definition.R1ToR1 (null)
  144.                 {
  145.                     @Override public double evaluate (
  146.                         final double x)
  147.                     {
  148.                         return 1.;
  149.                     }
  150.                 },
  151.                 right - left
  152.             );
  153.         }
  154.         catch (java.lang.Exception e)
  155.         {
  156.             e.printStackTrace();
  157.         }

  158.         return null;
  159.     }

  160.     /**
  161.      * Generate the Scaled and Displaced Abscissa Transform from (left, right) To (-1, +1)
  162.      *
  163.      * @param left Span Left
  164.      * @param right Span Right
  165.      *
  166.      * @return The Scaled and Displaced Abscissa Transform from (left, right) To (-1, +1)
  167.      */

  168.     public static final AbscissaTransform DisplaceAndScaleMinusOne_PlusOne (
  169.         final double left,
  170.         final double right)
  171.     {
  172.         if (!org.drip.numerical.common.NumberUtil.IsValid (left) ||
  173.             !org.drip.numerical.common.NumberUtil.IsValid (right))
  174.         {
  175.             return null;
  176.         }

  177.         final double scale = 0.5 * (right - left);
  178.         final double offset = 0.5 * (right + left);

  179.         try
  180.         {
  181.             return new AbscissaTransform (
  182.                 new org.drip.function.definition.R1ToR1 (null)
  183.                 {
  184.                     @Override public double evaluate (
  185.                         final double x)
  186.                     {
  187.                         return scale * x + offset;
  188.                     }
  189.                 },
  190.                 new org.drip.function.definition.R1ToR1 (null)
  191.                 {
  192.                     @Override public double evaluate (
  193.                         final double x)
  194.                     {
  195.                         return 1.;
  196.                     }
  197.                 },
  198.                 scale
  199.             );
  200.         }
  201.         catch (java.lang.Exception e)
  202.         {
  203.             e.printStackTrace();
  204.         }

  205.         return null;
  206.     }

  207.     /**
  208.      * Generate the Gauss-Hermite Abscissa Transform
  209.      *
  210.      * @return The Gauss-Hermite Abscissa Transform
  211.      */

  212.     public static final AbscissaTransform GaussHermite()
  213.     {
  214.         try
  215.         {
  216.             return new AbscissaTransform (
  217.                 new org.drip.function.definition.R1ToR1 (null)
  218.                 {
  219.                     @Override public double evaluate (
  220.                         final double x)
  221.                     {
  222.                         return x / (1. - x * x);
  223.                     }
  224.                 },
  225.                 new org.drip.function.definition.R1ToR1 (null)
  226.                 {
  227.                     @Override public double evaluate (
  228.                         final double x)
  229.                     {
  230.                         double xSquared = x * x;

  231.                         return -1. == x || 1. == x ? 0. : (1. + xSquared) / (1. - xSquared) / (1. - xSquared);
  232.                     }
  233.                 },
  234.                 1.
  235.             );
  236.         }
  237.         catch (java.lang.Exception e)
  238.         {
  239.             e.printStackTrace();
  240.         }

  241.         return null;
  242.     }

  243.     /**
  244.      * Generate the Gauss-Laguerre Abscissa Transform for Integrals in [a, +Infinity]
  245.      *
  246.      * @param left Span Left
  247.      *
  248.      * @return The Gauss-Laguerre Abscissa Transform for Integrals in [a, +Infinity]
  249.      */

  250.     public static final AbscissaTransform GaussLaguerreLeftDefinite (
  251.         final double left)
  252.     {
  253.         if (!org.drip.numerical.common.NumberUtil.IsValid (left))
  254.         {
  255.             return null;
  256.         }

  257.         try
  258.         {
  259.             return new AbscissaTransform (
  260.                 new org.drip.function.definition.R1ToR1 (null)
  261.                 {
  262.                     @Override public double evaluate (
  263.                         final double x)
  264.                     {
  265.                         return left + (x / (1. - x));
  266.                     }
  267.                 },
  268.                 new org.drip.function.definition.R1ToR1 (null)
  269.                 {
  270.                     @Override public double evaluate (
  271.                         final double x)
  272.                     {
  273.                         return -1. == x || 1. == x ? 0. : 1. / (1. - x) / (1. - x);
  274.                     }
  275.                 },
  276.                 1.
  277.             );
  278.         }
  279.         catch (java.lang.Exception e)
  280.         {
  281.             e.printStackTrace();
  282.         }

  283.         return null;
  284.     }

  285.     /**
  286.      * Generate the Gauss-Laguerre Abscissa Transform for Integrals in [-Infinity, a]
  287.      *
  288.      * @param right Span Right
  289.      *
  290.      * @return The Gauss-Laguerre Abscissa Transform for Integrals in [-Infinity, a]
  291.      */

  292.     public static final AbscissaTransform GaussLaguerreRightDefinite (
  293.         final double right)
  294.     {
  295.         if (!org.drip.numerical.common.NumberUtil.IsValid (right))
  296.         {
  297.             return null;
  298.         }

  299.         try
  300.         {
  301.             return new AbscissaTransform (
  302.                 new org.drip.function.definition.R1ToR1 (null)
  303.                 {
  304.                     @Override public double evaluate (
  305.                         final double x)
  306.                     {
  307.                         return right - ((1. - x) / x);
  308.                     }
  309.                 },
  310.                 new org.drip.function.definition.R1ToR1 (null)
  311.                 {
  312.                     @Override public double evaluate (
  313.                         final double x)
  314.                     {
  315.                         return 0. == x ? 0. : 1. / (x * x);
  316.                     }
  317.                 },
  318.                 1.
  319.             );
  320.         }
  321.         catch (java.lang.Exception e)
  322.         {
  323.             e.printStackTrace();
  324.         }

  325.         return null;
  326.     }

  327.     /**
  328.      * AbscissaTransform Constructor
  329.      *
  330.      * @param r1ToR1VariateChange R<sup>1</sup> to R<sup>1</sup> Variate Change Function
  331.      * @param r1PointValueScale R<sup>1</sup> Point Value Scale Function
  332.      * @param quadratureScale Quadrature Scale
  333.      *
  334.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  335.      */

  336.     public AbscissaTransform (
  337.         final org.drip.function.definition.R1ToR1 r1ToR1VariateChange,
  338.         final org.drip.function.definition.R1ToR1 r1PointValueScale,
  339.         final double quadratureScale)
  340.         throws java.lang.Exception
  341.     {
  342.         if (null == (_r1ToR1VariateChange = r1ToR1VariateChange) ||
  343.             null == (_r1PointValueScale = r1PointValueScale) ||
  344.             !org.drip.numerical.common.NumberUtil.IsValid (_quadratureScale = quadratureScale))
  345.         {
  346.             throw new java.lang.Exception ("AbscissaTransform Constructor => Invalid Inputs");
  347.         }
  348.     }

  349.     /**
  350.      * Retrieve the R<sup>1</sup> to R<sup>1</sup> Variate Change Function
  351.      *
  352.      * @return The R<sup>1</sup> to R<sup>1</sup> Variate Change Function
  353.      */

  354.     public org.drip.function.definition.R1ToR1 variateChange()
  355.     {
  356.         return _r1ToR1VariateChange;
  357.     }

  358.     /**
  359.      * Retrieve the R<sup>1</sup> Point Value Scale Function
  360.      *
  361.      * @return The R<sup>1</sup> Point Value Scale Function
  362.      */

  363.     public org.drip.function.definition.R1ToR1 pointValueScale()
  364.     {
  365.         return _r1PointValueScale;
  366.     }

  367.     /**
  368.      * Retrieve the Quadrature Scale
  369.      *
  370.      * @return The Quadrature Scale
  371.      */

  372.     public double quadratureScale()
  373.     {
  374.         return _quadratureScale;
  375.     }
  376. }