GaussLegendreQuadratureGenerator.java
- package org.drip.numerical.integration;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>GaussLegendreQuadratureGenerator</i> generates the Array of Orthogonal Legendre Polynomial Gaussian
- * Quadrature Based Abscissa and their corresponding Weights. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Gil, A., J. Segura, and N. M. Temme (2007): <i>Numerical Methods for Special Functions</i>
- * <b>Society for Industrial and Applied Mathematics</b> Philadelphia
- * </li>
- * <li>
- * Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
- * The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
- * </li>
- * <li>
- * Stoer, J., and R. Bulirsch (2002): <i>Introduction to Numerical Analysis 3rd Edition</i>
- * <b>Springer</b>
- * </li>
- * <li>
- * Wikipedia (2019): Gaussian Quadrature https://en.wikipedia.org/wiki/Gaussian_quadrature
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/integration/README.md">R<sup>1</sup> R<sup>d</sup> Numerical Integration Schemes</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class GaussLegendreQuadratureGenerator
- {
- /**
- * Generate the One Point Gauss Legendre Quadrature over [-1, +1]
- *
- * @param abscissaTransformer The Abscissa Transformer
- *
- * @return The One Point Gauss Legendre Quadrature over [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator OnePoint (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransformer)
- {
- try
- {
- return new org.drip.numerical.integration.QuadratureEstimator (
- abscissaTransformer,
- org.drip.numerical.common.Array2D.FromArray (
- new double[]
- {
- 0.000000000000000,
- },
- new double[]
- {
- 2.000000000000000,
- }
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Two Point Gauss Legendre Quadrature over [-1, +1]
- *
- * @param abscissaTransformer The Abscissa Transformer
- *
- * @return The Two Point Gauss Legendre Quadrature over [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator TwoPoint (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransformer)
- {
- double sqrt_1Over3_ = java.lang.Math.sqrt (1. / 3.);
- try
- {
- return new org.drip.numerical.integration.QuadratureEstimator (
- abscissaTransformer,
- org.drip.numerical.common.Array2D.FromArray (
- new double[]
- {
- -sqrt_1Over3_,
- sqrt_1Over3_,
- },
- new double[]
- {
- 1.000000000000000,
- 1.000000000000000,
- }
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Three Point Gauss Legendre Quadrature over [-1, +1]
- *
- * @param abscissaTransformer The Abscissa Transformer
- *
- * @return The Three Point Gauss Legendre Quadrature over [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator ThreePoint (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransformer)
- {
- double sqrt_3Over5_ = java.lang.Math.sqrt (3. / 5.);
- try
- {
- return new org.drip.numerical.integration.QuadratureEstimator (
- abscissaTransformer,
- org.drip.numerical.common.Array2D.FromArray (
- new double[]
- {
- -sqrt_3Over5_,
- 0.000000000000000,
- sqrt_3Over5_,
- },
- new double[]
- {
- 5. / 9.,
- 8. / 9.,
- 5. / 9.,
- }
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Four Point Gauss Legendre Quadrature over [-1, +1]
- *
- * @param abscissaTransformer The Abscissa Transformer
- *
- * @return The Four Point Gauss Legendre Quadrature over [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator FourPoint (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransformer)
- {
- double sqrt_30_Over36 = java.lang.Math.sqrt (30.) / 36.;
- double nearWeight = 0.5 + sqrt_30_Over36;
- double farWeight = 0.5 - sqrt_30_Over36;
- double threeOver7 = 3. / 7.;
- double twoOver7Sqrt_6Over5_ = 2. / 7. * java.lang.Math.sqrt (6. / 5.);
- double farNode = java.lang.Math.sqrt (threeOver7 + twoOver7Sqrt_6Over5_);
- double nearNode = java.lang.Math.sqrt (threeOver7 - twoOver7Sqrt_6Over5_);
- try
- {
- return new org.drip.numerical.integration.QuadratureEstimator (
- abscissaTransformer,
- org.drip.numerical.common.Array2D.FromArray (
- new double[]
- {
- -farNode,
- -nearNode,
- nearNode,
- farNode,
- },
- new double[]
- {
- farWeight,
- nearWeight,
- nearWeight,
- farWeight,
- }
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Five Point Gauss Legendre Quadrature over [-1, +1]
- *
- * @param abscissaTransformer The Abscissa Transformer
- *
- * @return The Five Point Gauss Legendre Quadrature over [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator FivePoint (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransformer)
- {
- double thirteenSqrt_70_ = 13. * java.lang.Math.sqrt (70.);
- double nearWeight = (322. + thirteenSqrt_70_) / 900.;
- double farWeight = (322. - thirteenSqrt_70_) / 900.;
- double twoSqrt_10Over7_ = 2. * java.lang.Math.sqrt (10. / 7.);
- double farNode = java.lang.Math.sqrt (5. + twoSqrt_10Over7_) / 3.;
- double nearNode = java.lang.Math.sqrt (5. - twoSqrt_10Over7_) / 3.;
- try
- {
- return new org.drip.numerical.integration.QuadratureEstimator (
- abscissaTransformer,
- org.drip.numerical.common.Array2D.FromArray (
- new double[]
- {
- -farNode,
- -nearNode,
- 0.000000000000000,
- nearNode,
- farNode,
- },
- new double[]
- {
- farWeight,
- nearWeight,
- 128. / 225.,
- nearWeight,
- farWeight,
- }
- )
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the One Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- *
- * @param left Left Integrand Quadrature Limit
- * @param right Right Integrand Quadrature Limit
- *
- * @return The One Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator OnePoint (
- final double left,
- final double right)
- {
- return OnePoint (
- org.drip.numerical.integration.AbscissaTransform.DisplaceAndScaleMinusOne_PlusOne (
- left,
- right
- )
- );
- }
- /**
- * Generate the Two Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- *
- * @param left Left Integrand Quadrature Limit
- * @param right Right Integrand Quadrature Limit
- *
- * @return The Two Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator TwoPoint (
- final double left,
- final double right)
- {
- return TwoPoint (
- org.drip.numerical.integration.AbscissaTransform.DisplaceAndScaleMinusOne_PlusOne (
- left,
- right
- )
- );
- }
- /**
- * Generate the Three Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- *
- * @param left Left Integrand Quadrature Limit
- * @param right Right Integrand Quadrature Limit
- *
- * @return The Three Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator ThreePoint (
- final double left,
- final double right)
- {
- return ThreePoint (
- org.drip.numerical.integration.AbscissaTransform.DisplaceAndScaleMinusOne_PlusOne (
- left,
- right
- )
- );
- }
- /**
- * Generate the Four Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- *
- * @param left Left Integrand Quadrature Limit
- * @param right Right Integrand Quadrature Limit
- *
- * @return The Four Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator FourPoint (
- final double left,
- final double right)
- {
- return FourPoint (
- org.drip.numerical.integration.AbscissaTransform.DisplaceAndScaleMinusOne_PlusOne (
- left,
- right
- )
- );
- }
- /**
- * Generate the Five Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- *
- * @param left Left Integrand Quadrature Limit
- * @param right Right Integrand Quadrature Limit
- *
- * @return The Five Point Gauss Legendre Quadrature over [a, b] onto [-1, +1]
- */
- public static final org.drip.numerical.integration.QuadratureEstimator FivePoint (
- final double left,
- final double right)
- {
- return FivePoint (
- org.drip.numerical.integration.AbscissaTransform.DisplaceAndScaleMinusOne_PlusOne (
- left,
- right
- )
- );
- }
- }