QuadratureEstimator.java

  1. package org.drip.numerical.integration;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>QuadratureEstimator</i> estimates an Integrand Quadrature using the Array of Transformed Quadrature
  76.  * Abscissa and their corresponding Weights. The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Briol, F. X., C. J. Oates, M. Girolami, and M. A. Osborne (2015): <i>Frank-Wolfe Bayesian
  82.  *              Quadrature: Probabilistic Integration with Theoretical Guarantees</i> <b>arXiv</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Forsythe, G. E., M. A. Malcolm, and C. B. Moler (1977): <i>Computer Methods for Mathematical
  86.  *              Computation</i> <b>Prentice Hall</b> Englewood Cliffs NJ
  87.  *      </li>
  88.  *      <li>
  89.  *          Leader, J. J. (2004): <i>Numerical Analysis and Scientific Computation</i> <b>Addison Wesley</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Stoer, J., and R. Bulirsch (1980): <i>Introduction to Numerical Analysis</i>
  93.  *              <b>Springer-Verlag</b> New York
  94.  *      </li>
  95.  *      <li>
  96.  *          Wikipedia (2019): Numerical Integration https://en.wikipedia.org/wiki/Numerical_integration
  97.  *      </li>
  98.  *  </ul>
  99.  *
  100.  *  <br><br>
  101.  *  <ul>
  102.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  103.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  104.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  105.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/integration/README.md">R<sup>1</sup> R<sup>d</sup> Numerical Integration Schemes</a></li>
  106.  *  </ul>
  107.  *
  108.  * @author Lakshmi Krishnamurthy
  109.  */

  110. public class QuadratureEstimator
  111. {
  112.     private org.drip.numerical.common.Array2D _nodeWeightArray = null;
  113.     private org.drip.numerical.integration.AbscissaTransform _abscissaTransform = null;

  114.     /**
  115.      * QuadratureEstimator Constructor
  116.      *
  117.      * @param abscissaTransform The Abscissa Transform
  118.      * @param nodeWeightArray Array of the Nodes and Weights
  119.      *
  120.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  121.      */

  122.     public QuadratureEstimator (
  123.         final org.drip.numerical.integration.AbscissaTransform abscissaTransform,
  124.         final org.drip.numerical.common.Array2D nodeWeightArray)
  125.         throws java.lang.Exception
  126.     {
  127.         if (null == (_abscissaTransform = abscissaTransform) ||
  128.             null == (_nodeWeightArray = nodeWeightArray))
  129.         {
  130.             throw new java.lang.Exception ("QuadratureEstimator Constructor => Invalid Inputs");
  131.         }
  132.     }

  133.     /**
  134.      * Retrieve the Abscissa Transform
  135.      *
  136.      * @return The Abscissa Transform
  137.      */

  138.     public org.drip.numerical.integration.AbscissaTransform abscissaTransform()
  139.     {
  140.         return _abscissaTransform;
  141.     }

  142.     /**
  143.      * Retrieve the 2D Array of Nodes and Weights
  144.      *
  145.      * @return 2D Array of Nodes and Weights
  146.      */

  147.     public org.drip.numerical.common.Array2D nodeWeightArray()
  148.     {
  149.         return _nodeWeightArray;
  150.     }

  151.     /**
  152.      * Integrate the Specified Integrand over the Nodes
  153.      *
  154.      * @param r1ToR1Integrand The R<sup>1</sup> To R<sup>1</sup> Integrand
  155.      *
  156.      * @return The Integrand Quadrature
  157.      *
  158.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  159.      */

  160.     public double integrate (
  161.         final org.drip.function.definition.R1ToR1 r1ToR1Integrand)
  162.         throws java.lang.Exception
  163.     {
  164.         if (null == r1ToR1Integrand)
  165.         {
  166.             throw new java.lang.Exception ("QuadratureEstimator::integrate => Invalid Inputs");
  167.         }

  168.         double[] weightArray = _nodeWeightArray.y();

  169.         double[] abscissaArray = _nodeWeightArray.x();

  170.         double quadrature = 0.;
  171.         int nodeCount = abscissaArray.length;

  172.         double quadratureScale = _abscissaTransform.quadratureScale();

  173.         org.drip.function.definition.R1ToR1 r1PointValueScale = _abscissaTransform.pointValueScale();

  174.         org.drip.function.definition.R1ToR1 r1ToR1VariateChange = _abscissaTransform.variateChange();

  175.         for (int nodeIndex = 0; nodeIndex < nodeCount; ++nodeIndex)
  176.         {
  177.             quadrature = quadrature + quadratureScale * weightArray[nodeIndex] *
  178.                 r1PointValueScale.evaluate (abscissaArray[nodeIndex]) *
  179.                 r1ToR1Integrand.evaluate (r1ToR1VariateChange.evaluate (abscissaArray[nodeIndex]));
  180.         }

  181.         return quadrature;
  182.     }
  183. }