QuadratureEstimator.java
- package org.drip.numerical.integration;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>QuadratureEstimator</i> estimates an Integrand Quadrature using the Array of Transformed Quadrature
- * Abscissa and their corresponding Weights. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Briol, F. X., C. J. Oates, M. Girolami, and M. A. Osborne (2015): <i>Frank-Wolfe Bayesian
- * Quadrature: Probabilistic Integration with Theoretical Guarantees</i> <b>arXiv</b>
- * </li>
- * <li>
- * Forsythe, G. E., M. A. Malcolm, and C. B. Moler (1977): <i>Computer Methods for Mathematical
- * Computation</i> <b>Prentice Hall</b> Englewood Cliffs NJ
- * </li>
- * <li>
- * Leader, J. J. (2004): <i>Numerical Analysis and Scientific Computation</i> <b>Addison Wesley</b>
- * </li>
- * <li>
- * Stoer, J., and R. Bulirsch (1980): <i>Introduction to Numerical Analysis</i>
- * <b>Springer-Verlag</b> New York
- * </li>
- * <li>
- * Wikipedia (2019): Numerical Integration https://en.wikipedia.org/wiki/Numerical_integration
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/integration/README.md">R<sup>1</sup> R<sup>d</sup> Numerical Integration Schemes</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class QuadratureEstimator
- {
- private org.drip.numerical.common.Array2D _nodeWeightArray = null;
- private org.drip.numerical.integration.AbscissaTransform _abscissaTransform = null;
- /**
- * QuadratureEstimator Constructor
- *
- * @param abscissaTransform The Abscissa Transform
- * @param nodeWeightArray Array of the Nodes and Weights
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public QuadratureEstimator (
- final org.drip.numerical.integration.AbscissaTransform abscissaTransform,
- final org.drip.numerical.common.Array2D nodeWeightArray)
- throws java.lang.Exception
- {
- if (null == (_abscissaTransform = abscissaTransform) ||
- null == (_nodeWeightArray = nodeWeightArray))
- {
- throw new java.lang.Exception ("QuadratureEstimator Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Abscissa Transform
- *
- * @return The Abscissa Transform
- */
- public org.drip.numerical.integration.AbscissaTransform abscissaTransform()
- {
- return _abscissaTransform;
- }
- /**
- * Retrieve the 2D Array of Nodes and Weights
- *
- * @return 2D Array of Nodes and Weights
- */
- public org.drip.numerical.common.Array2D nodeWeightArray()
- {
- return _nodeWeightArray;
- }
- /**
- * Integrate the Specified Integrand over the Nodes
- *
- * @param r1ToR1Integrand The R<sup>1</sup> To R<sup>1</sup> Integrand
- *
- * @return The Integrand Quadrature
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double integrate (
- final org.drip.function.definition.R1ToR1 r1ToR1Integrand)
- throws java.lang.Exception
- {
- if (null == r1ToR1Integrand)
- {
- throw new java.lang.Exception ("QuadratureEstimator::integrate => Invalid Inputs");
- }
- double[] weightArray = _nodeWeightArray.y();
- double[] abscissaArray = _nodeWeightArray.x();
- double quadrature = 0.;
- int nodeCount = abscissaArray.length;
- double quadratureScale = _abscissaTransform.quadratureScale();
- org.drip.function.definition.R1ToR1 r1PointValueScale = _abscissaTransform.pointValueScale();
- org.drip.function.definition.R1ToR1 r1ToR1VariateChange = _abscissaTransform.variateChange();
- for (int nodeIndex = 0; nodeIndex < nodeCount; ++nodeIndex)
- {
- quadrature = quadrature + quadratureScale * weightArray[nodeIndex] *
- r1PointValueScale.evaluate (abscissaArray[nodeIndex]) *
- r1ToR1Integrand.evaluate (r1ToR1VariateChange.evaluate (abscissaArray[nodeIndex]));
- }
- return quadrature;
- }
- }