LinearSystemSolver.java
- package org.drip.numerical.linearalgebra;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LinearSystemSolver</i> implements the solver for a system of linear equations given by
- *
- * A * x = B
- *
- * where A is the matrix, x the set of variables, and B is the result to be solved for. It exports the
- * following functions:
- *
- * <br><br>
- * <ul>
- * <li>
- * Row Regularization and Diagonal Pivoting
- * </li>
- * <li>
- * Check for Diagonal Dominance
- * </li>
- * <li>
- * Solving the linear system using any one of the following: Gaussian Elimination, Gauss Seidel
- * reduction, or matrix inversion.
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/linearalgebra/README.md">Linear Algebra Matrix Transform Library</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LinearSystemSolver {
- /**
- * Regularize (i.e., convert the diagonal entries of the given cell to non-zero using suitable linear
- * transformations)
- *
- * @param aadblA In/Out Matrix to be regularized
- * @param adblSolution In/out RHS
- * @param iInnerRow Matrix Cell Row that needs to be regularized
- * @param iOuter Matrix Cell Column that needs to be regularized
- *
- * @return TRUE - Matrix has been successfully regularized
- */
- public static final boolean RegulariseRow (
- final double[][] aadblA,
- final double[] adblSolution,
- final int iInnerRow,
- final int iOuter)
- {
- double dblInnerScaler = aadblA[iInnerRow][iOuter];
- if (0. != dblInnerScaler) return true;
- int iSize = aadblA.length;
- int iProxyRow = iSize - 1;
- while (0. == aadblA[iProxyRow][iOuter] && iProxyRow >= 0) --iProxyRow;
- if (iProxyRow < 0) return false;
- adblSolution[iInnerRow] += adblSolution[iProxyRow];
- for (int i = 0; i < iSize; ++i)
- aadblA[iInnerRow][i] += aadblA[iProxyRow][i];
- return 0. != aadblA[iInnerRow][iOuter];
- }
- /**
- * Check to see if the matrix is diagonally dominant.
- *
- * @param aadblA Input Matrix
- * @param bCheckForStrongDominance TRUE - Fail if the matrix is not strongly diagonally dominant.
- *
- * @return TRUE - Strongly or weakly Diagonally Dominant
- */
- public static final boolean IsDiagonallyDominant (
- final double[][] aadblA,
- final boolean bCheckForStrongDominance)
- {
- if (null == aadblA) return false;
- int iSize = aadblA.length;
- if (0 == iSize || null == aadblA[0] || iSize != aadblA[0].length) return false;
- for (int i = 0; i < iSize; ++i) {
- double dblAbsoluteDiagonalEntry = java.lang.Math.abs (aadblA[i][i]);
- for (int j = 0; j < iSize; ++j) {
- if (i != j) {
- if ((bCheckForStrongDominance && dblAbsoluteDiagonalEntry <= java.lang.Math.abs
- (aadblA[i][j])) || (!bCheckForStrongDominance && dblAbsoluteDiagonalEntry <
- java.lang.Math.abs (aadblA[i][j])))
- return false;
- }
- }
- }
- return true;
- }
- /**
- * Pivots the matrix A (Refer to wikipedia to find out what "pivot a matrix" means ;))
- *
- * @param aadblA Input Matrix
- * @param adblB Input RHS
- *
- * @return The pivoted input matrix and the re-jigged input RHS
- */
- public static final double[] Pivot (
- final double[][] aadblA,
- final double[] adblB)
- {
- if (null == aadblA || null == adblB) return null;
- int iSize = aadblA.length;
- double[] adblSolution = new double[iSize];
- if (0 == iSize || null == aadblA[0] || iSize != aadblA[0].length || iSize != adblB.length)
- return null;
- for (int i = 0; i < iSize; ++i)
- adblSolution[i] = adblB[i];
- for (int iDiagonal = 0; iDiagonal < iSize; ++iDiagonal) {
- if (!RegulariseRow (aadblA, adblSolution, iDiagonal, iDiagonal)) return null;
- }
- return adblSolution;
- }
- /**
- * Solve the Linear System using Matrix Inversion from the Set of Values in the Array
- *
- * @param aadblAIn Input Matrix
- * @param adblB The Array of Values to be calibrated to
- *
- * @return The Linear System Solution for the Coefficients
- */
- public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingMatrixInversion (
- final double[][] aadblAIn,
- final double[] adblB)
- {
- if (null == aadblAIn || null == adblB) return null;
- int iSize = aadblAIn.length;
- double[] adblSolution = new double[iSize];
- if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length) return null;
- if (adblB.length != iSize) return null;
- double[][] aadblInv = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination (aadblAIn);
- if (null == aadblInv) return null;
- double[] adblProduct = org.drip.numerical.linearalgebra.Matrix.Product (aadblInv, adblB);
- if (null == adblProduct || iSize != adblProduct.length) return null;
- for (int i = 0; i < iSize; ++i)
- adblSolution[i] = adblProduct[i];
- try {
- return new LinearizationOutput (adblSolution, aadblInv, "GaussianElimination");
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Solve the Linear System using Gaussian Elimination from the Set of Values in the Array
- *
- * @param aadblAIn Input Matrix
- * @param adblB The Array of Values to be calibrated to
- *
- * @return The Linear System Solution for the Coefficients
- */
- public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingGaussianElimination (
- final double[][] aadblAIn,
- final double[] adblB)
- {
- if (null == aadblAIn || null == adblB) return null;
- int iSize = aadblAIn.length;
- double[][] aadblA = new double[iSize][iSize];
- if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length) return null;
- if (adblB.length != iSize) return null;
- for (int i = 0; i < iSize; ++i) {
- for (int j = 0; j < iSize; ++j)
- aadblA[i][j] = aadblAIn[i][j];
- }
- double[] adblSolution = Pivot (aadblA, adblB);
- if (null == adblSolution || adblSolution.length != iSize) return null;
- for (int iEliminationDiagonalPivot = iSize - 1; iEliminationDiagonalPivot >= 0;
- --iEliminationDiagonalPivot) {
- for (int iRow = 0; iRow < iSize; ++iRow) {
- if (iRow == iEliminationDiagonalPivot) continue;
- if (0. == aadblA[iRow][iEliminationDiagonalPivot]) continue;
- double dblEliminationRatio = aadblA[iEliminationDiagonalPivot][iEliminationDiagonalPivot] /
- aadblA[iRow][iEliminationDiagonalPivot];
- adblSolution[iRow] = adblSolution[iRow] * dblEliminationRatio -
- adblSolution[iEliminationDiagonalPivot];
- for (int iCol = 0; iCol < iSize; ++iCol)
- aadblA[iRow][iCol] = aadblA[iRow][iCol] * dblEliminationRatio -
- aadblA[iEliminationDiagonalPivot][iCol];
- }
- }
- for (int i = iSize - 1; i >= 0; --i) {
- for (int j = iSize - 1; j > i; --j)
- adblSolution[i] -= adblSolution[j] * aadblA[i][j];
- adblSolution[i] /= aadblA[i][i];
- }
- try {
- return new LinearizationOutput (adblSolution, aadblA, "GaussianElimination");
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Solve the Linear System using the Gauss-Seidel algorithm from the Set of Values in the Array
- *
- * @param aadblAIn Input Matrix
- * @param adblB The Array of Values to be calibrated to
- *
- * @return The Linear System Solution for the Coefficients
- */
- public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingGaussSeidel (
- final double[][] aadblAIn,
- final double[] adblB)
- {
- if (null == aadblAIn || null == adblB) return null;
- int NUM_SIM = 5;
- int iSize = aadblAIn.length;
- double[] adblSolution = new double[iSize];
- double[][] aadblA = new double[iSize][iSize];
- if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length || iSize != adblB.length)
- return null;
- for (int i = 0; i < iSize; ++i) {
- for (int j = 0; j < iSize; ++j)
- aadblA[i][j] = aadblAIn[i][j];
- }
- double[] adblRHS = Pivot (aadblA, adblB);
- if (null == adblRHS || iSize != adblRHS.length ||
- !org.drip.numerical.linearalgebra.LinearSystemSolver.IsDiagonallyDominant (aadblA, true))
- return null;
- for (int i = 0; i < iSize; ++i)
- adblSolution[i] = 0.;
- for (int k = 0; k < NUM_SIM; ++k) {
- for (int i = 0; i < iSize; ++i) {
- adblSolution[i] = adblRHS[i];
- for (int j = 0; j < iSize; ++j) {
- if (j != i) adblSolution[i] -= aadblA[i][j] * adblSolution[j];
- }
- adblSolution[i] /= aadblA[i][i];
- }
- }
- try {
- return new LinearizationOutput (adblSolution, aadblA, "GaussianSeidel");
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }