LinearSystemSolver.java
package org.drip.numerical.linearalgebra;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
* Copyright (C) 2014 Lakshmi Krishnamurthy
* Copyright (C) 2013 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>LinearSystemSolver</i> implements the solver for a system of linear equations given by
*
* A * x = B
*
* where A is the matrix, x the set of variables, and B is the result to be solved for. It exports the
* following functions:
*
* <br><br>
* <ul>
* <li>
* Row Regularization and Diagonal Pivoting
* </li>
* <li>
* Check for Diagonal Dominance
* </li>
* <li>
* Solving the linear system using any one of the following: Gaussian Elimination, Gauss Seidel
* reduction, or matrix inversion.
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/linearalgebra/README.md">Linear Algebra Matrix Transform Library</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class LinearSystemSolver {
/**
* Regularize (i.e., convert the diagonal entries of the given cell to non-zero using suitable linear
* transformations)
*
* @param aadblA In/Out Matrix to be regularized
* @param adblSolution In/out RHS
* @param iInnerRow Matrix Cell Row that needs to be regularized
* @param iOuter Matrix Cell Column that needs to be regularized
*
* @return TRUE - Matrix has been successfully regularized
*/
public static final boolean RegulariseRow (
final double[][] aadblA,
final double[] adblSolution,
final int iInnerRow,
final int iOuter)
{
double dblInnerScaler = aadblA[iInnerRow][iOuter];
if (0. != dblInnerScaler) return true;
int iSize = aadblA.length;
int iProxyRow = iSize - 1;
while (0. == aadblA[iProxyRow][iOuter] && iProxyRow >= 0) --iProxyRow;
if (iProxyRow < 0) return false;
adblSolution[iInnerRow] += adblSolution[iProxyRow];
for (int i = 0; i < iSize; ++i)
aadblA[iInnerRow][i] += aadblA[iProxyRow][i];
return 0. != aadblA[iInnerRow][iOuter];
}
/**
* Check to see if the matrix is diagonally dominant.
*
* @param aadblA Input Matrix
* @param bCheckForStrongDominance TRUE - Fail if the matrix is not strongly diagonally dominant.
*
* @return TRUE - Strongly or weakly Diagonally Dominant
*/
public static final boolean IsDiagonallyDominant (
final double[][] aadblA,
final boolean bCheckForStrongDominance)
{
if (null == aadblA) return false;
int iSize = aadblA.length;
if (0 == iSize || null == aadblA[0] || iSize != aadblA[0].length) return false;
for (int i = 0; i < iSize; ++i) {
double dblAbsoluteDiagonalEntry = java.lang.Math.abs (aadblA[i][i]);
for (int j = 0; j < iSize; ++j) {
if (i != j) {
if ((bCheckForStrongDominance && dblAbsoluteDiagonalEntry <= java.lang.Math.abs
(aadblA[i][j])) || (!bCheckForStrongDominance && dblAbsoluteDiagonalEntry <
java.lang.Math.abs (aadblA[i][j])))
return false;
}
}
}
return true;
}
/**
* Pivots the matrix A (Refer to wikipedia to find out what "pivot a matrix" means ;))
*
* @param aadblA Input Matrix
* @param adblB Input RHS
*
* @return The pivoted input matrix and the re-jigged input RHS
*/
public static final double[] Pivot (
final double[][] aadblA,
final double[] adblB)
{
if (null == aadblA || null == adblB) return null;
int iSize = aadblA.length;
double[] adblSolution = new double[iSize];
if (0 == iSize || null == aadblA[0] || iSize != aadblA[0].length || iSize != adblB.length)
return null;
for (int i = 0; i < iSize; ++i)
adblSolution[i] = adblB[i];
for (int iDiagonal = 0; iDiagonal < iSize; ++iDiagonal) {
if (!RegulariseRow (aadblA, adblSolution, iDiagonal, iDiagonal)) return null;
}
return adblSolution;
}
/**
* Solve the Linear System using Matrix Inversion from the Set of Values in the Array
*
* @param aadblAIn Input Matrix
* @param adblB The Array of Values to be calibrated to
*
* @return The Linear System Solution for the Coefficients
*/
public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingMatrixInversion (
final double[][] aadblAIn,
final double[] adblB)
{
if (null == aadblAIn || null == adblB) return null;
int iSize = aadblAIn.length;
double[] adblSolution = new double[iSize];
if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length) return null;
if (adblB.length != iSize) return null;
double[][] aadblInv = org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination (aadblAIn);
if (null == aadblInv) return null;
double[] adblProduct = org.drip.numerical.linearalgebra.Matrix.Product (aadblInv, adblB);
if (null == adblProduct || iSize != adblProduct.length) return null;
for (int i = 0; i < iSize; ++i)
adblSolution[i] = adblProduct[i];
try {
return new LinearizationOutput (adblSolution, aadblInv, "GaussianElimination");
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Solve the Linear System using Gaussian Elimination from the Set of Values in the Array
*
* @param aadblAIn Input Matrix
* @param adblB The Array of Values to be calibrated to
*
* @return The Linear System Solution for the Coefficients
*/
public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingGaussianElimination (
final double[][] aadblAIn,
final double[] adblB)
{
if (null == aadblAIn || null == adblB) return null;
int iSize = aadblAIn.length;
double[][] aadblA = new double[iSize][iSize];
if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length) return null;
if (adblB.length != iSize) return null;
for (int i = 0; i < iSize; ++i) {
for (int j = 0; j < iSize; ++j)
aadblA[i][j] = aadblAIn[i][j];
}
double[] adblSolution = Pivot (aadblA, adblB);
if (null == adblSolution || adblSolution.length != iSize) return null;
for (int iEliminationDiagonalPivot = iSize - 1; iEliminationDiagonalPivot >= 0;
--iEliminationDiagonalPivot) {
for (int iRow = 0; iRow < iSize; ++iRow) {
if (iRow == iEliminationDiagonalPivot) continue;
if (0. == aadblA[iRow][iEliminationDiagonalPivot]) continue;
double dblEliminationRatio = aadblA[iEliminationDiagonalPivot][iEliminationDiagonalPivot] /
aadblA[iRow][iEliminationDiagonalPivot];
adblSolution[iRow] = adblSolution[iRow] * dblEliminationRatio -
adblSolution[iEliminationDiagonalPivot];
for (int iCol = 0; iCol < iSize; ++iCol)
aadblA[iRow][iCol] = aadblA[iRow][iCol] * dblEliminationRatio -
aadblA[iEliminationDiagonalPivot][iCol];
}
}
for (int i = iSize - 1; i >= 0; --i) {
for (int j = iSize - 1; j > i; --j)
adblSolution[i] -= adblSolution[j] * aadblA[i][j];
adblSolution[i] /= aadblA[i][i];
}
try {
return new LinearizationOutput (adblSolution, aadblA, "GaussianElimination");
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Solve the Linear System using the Gauss-Seidel algorithm from the Set of Values in the Array
*
* @param aadblAIn Input Matrix
* @param adblB The Array of Values to be calibrated to
*
* @return The Linear System Solution for the Coefficients
*/
public static final org.drip.numerical.linearalgebra.LinearizationOutput SolveUsingGaussSeidel (
final double[][] aadblAIn,
final double[] adblB)
{
if (null == aadblAIn || null == adblB) return null;
int NUM_SIM = 5;
int iSize = aadblAIn.length;
double[] adblSolution = new double[iSize];
double[][] aadblA = new double[iSize][iSize];
if (0 == iSize || null == aadblAIn[0] || iSize != aadblAIn[0].length || iSize != adblB.length)
return null;
for (int i = 0; i < iSize; ++i) {
for (int j = 0; j < iSize; ++j)
aadblA[i][j] = aadblAIn[i][j];
}
double[] adblRHS = Pivot (aadblA, adblB);
if (null == adblRHS || iSize != adblRHS.length ||
!org.drip.numerical.linearalgebra.LinearSystemSolver.IsDiagonallyDominant (aadblA, true))
return null;
for (int i = 0; i < iSize; ++i)
adblSolution[i] = 0.;
for (int k = 0; k < NUM_SIM; ++k) {
for (int i = 0; i < iSize; ++i) {
adblSolution[i] = adblRHS[i];
for (int j = 0; j < iSize; ++j) {
if (j != i) adblSolution[i] -= aadblA[i][j] * adblSolution[j];
}
adblSolution[i] /= aadblA[i][i];
}
}
try {
return new LinearizationOutput (adblSolution, aadblA, "GaussianSeidel");
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
}