GolubWelsch.java

  1. package org.drip.numerical.quadrature;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>GolubWelsch</i> implements the Golub-Welsch Algorithm that extracts the Quadrature Nodes and Weights.
  76.  * The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
  82.  *              on Mathematics</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Gil, A., J. Segura, and N. M. Temme (2007): <i>Numerical Methods for Special Functions</i>
  86.  *              <b>Society for Industrial and Applied Mathematics</b> Philadelphia
  87.  *      </li>
  88.  *      <li>
  89.  *          Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
  90.  *              The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
  91.  *      </li>
  92.  *      <li>
  93.  *          Stoer, J., and R. Bulirsch (2002): <i>Introduction to Numerical Analysis 3rd Edition</i>
  94.  *              <b>Springer</b>
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Gaussian Quadrature https://en.wikipedia.org/wiki/Gaussian_quadrature
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/quadrature/README.md">R<sup>1</sup> Gaussian Integration Quadrature Schemes</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public class GolubWelsch
  112. {
  113.     private double[][] _recurrenceJ = null;

  114.     /**
  115.      * GolubWelsch Constructor
  116.      *
  117.      * @param recurrenceJ The J Matrix derived from Orthogonal Polynomial Recursion
  118.      *
  119.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  120.      */

  121.     public GolubWelsch (
  122.         final double[][] recurrenceJ)
  123.         throws java.lang.Exception
  124.     {
  125.         if (null == (_recurrenceJ = recurrenceJ))
  126.         {
  127.             throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
  128.         }

  129.         int size = _recurrenceJ.length;

  130.         if (0 == size)
  131.         {
  132.             throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
  133.         }

  134.         for (int column = 0; column < size; ++column)
  135.         {
  136.             if (null == _recurrenceJ || size != _recurrenceJ[column].length ||
  137.                 !org.drip.numerical.common.NumberUtil.IsValid (_recurrenceJ[column]))
  138.             {
  139.                 throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
  140.             }
  141.         }
  142.     }

  143.     /**
  144.      * Retrieve the Recurrence Matrix J
  145.      *
  146.      * @return The Recurrence Matrix J
  147.      */

  148.     public double[][] recurrenceJ()
  149.     {
  150.         return _recurrenceJ;
  151.     }

  152.     /**
  153.      * Generate the Symmetric Tri-diagonal Matrix from the Recurrence J Matrix
  154.      *
  155.      * @return The Symmetric Tri-diagonal Matrix from the Recurrence J Matrix
  156.      */

  157.     public double[][] symmetricTridiagonal()
  158.     {
  159.         int size = _recurrenceJ.length;
  160.         double[][] symmetricTridiagonal = new double[size][size];

  161.         for (int row = 0; row < size; ++row)
  162.         {
  163.             for (int column = 0; column < size; ++column)
  164.             {
  165.                 symmetricTridiagonal[row][column] = 0.;
  166.             }
  167.         }

  168.         for (int row = 0; row < size; ++row)
  169.         {
  170.             int column = row + 1;

  171.             if (column < size)
  172.             {
  173.                 double sqrtRecurrenceB = java.lang.Math.sqrt (_recurrenceJ[row][column]);

  174.                 symmetricTridiagonal[row][column] = sqrtRecurrenceB;
  175.                 symmetricTridiagonal[column][row] = sqrtRecurrenceB;
  176.             }

  177.             symmetricTridiagonal[row][row] = _recurrenceJ[row][row];
  178.         }

  179.         return symmetricTridiagonal;
  180.     }

  181.     /**
  182.      * Generate the Quadrature Nodes and Unscaled Weights
  183.      *
  184.      * @return The Quadrature Nodes and Unscaled Weights
  185.      */

  186.     public org.drip.numerical.common.Array2D nodesAndUnscaledWeights()
  187.     {
  188.         int size = _recurrenceJ.length;
  189.         double[] nodeArray = new double[size];
  190.         double[] unscaledWeightArray = new double[size];

  191.         try
  192.         {
  193.             org.drip.numerical.eigen.EigenComponent[] orderedEigenComponentArray = new
  194.                 org.drip.numerical.eigen.QREigenComponentExtractor (
  195.                     100,
  196.                     1.e-06
  197.                 ).orderedEigenComponentArray (symmetricTridiagonal());

  198.             if (null == orderedEigenComponentArray || 0 == orderedEigenComponentArray.length)
  199.             {
  200.                 return null;
  201.             }

  202.             for (int componentIndex = 0;
  203.                 componentIndex < orderedEigenComponentArray.length;
  204.                 ++componentIndex)
  205.             {
  206.                 nodeArray[componentIndex] = orderedEigenComponentArray[componentIndex].eigenValue();

  207.                 double leadingEigenComponentCoefficient =
  208.                     orderedEigenComponentArray[componentIndex].eigenVector()[0];

  209.                 unscaledWeightArray[componentIndex] = leadingEigenComponentCoefficient *
  210.                     leadingEigenComponentCoefficient;
  211.             }

  212.             return org.drip.numerical.common.Array2D.FromArray (
  213.                 nodeArray,
  214.                 unscaledWeightArray
  215.             );
  216.         }
  217.         catch (java.lang.Exception e)
  218.         {
  219.             e.printStackTrace();
  220.         }

  221.         return null;
  222.     }
  223. }