GolubWelsch.java
- package org.drip.numerical.quadrature;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>GolubWelsch</i> implements the Golub-Welsch Algorithm that extracts the Quadrature Nodes and Weights.
- * The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Gil, A., J. Segura, and N. M. Temme (2007): <i>Numerical Methods for Special Functions</i>
- * <b>Society for Industrial and Applied Mathematics</b> Philadelphia
- * </li>
- * <li>
- * Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
- * The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
- * </li>
- * <li>
- * Stoer, J., and R. Bulirsch (2002): <i>Introduction to Numerical Analysis 3rd Edition</i>
- * <b>Springer</b>
- * </li>
- * <li>
- * Wikipedia (2019): Gaussian Quadrature https://en.wikipedia.org/wiki/Gaussian_quadrature
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/quadrature/README.md">R<sup>1</sup> Gaussian Integration Quadrature Schemes</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class GolubWelsch
- {
- private double[][] _recurrenceJ = null;
- /**
- * GolubWelsch Constructor
- *
- * @param recurrenceJ The J Matrix derived from Orthogonal Polynomial Recursion
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public GolubWelsch (
- final double[][] recurrenceJ)
- throws java.lang.Exception
- {
- if (null == (_recurrenceJ = recurrenceJ))
- {
- throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
- }
- int size = _recurrenceJ.length;
- if (0 == size)
- {
- throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
- }
- for (int column = 0; column < size; ++column)
- {
- if (null == _recurrenceJ || size != _recurrenceJ[column].length ||
- !org.drip.numerical.common.NumberUtil.IsValid (_recurrenceJ[column]))
- {
- throw new java.lang.Exception ("GolubWelsch Constructor => Invalid Inputs");
- }
- }
- }
- /**
- * Retrieve the Recurrence Matrix J
- *
- * @return The Recurrence Matrix J
- */
- public double[][] recurrenceJ()
- {
- return _recurrenceJ;
- }
- /**
- * Generate the Symmetric Tri-diagonal Matrix from the Recurrence J Matrix
- *
- * @return The Symmetric Tri-diagonal Matrix from the Recurrence J Matrix
- */
- public double[][] symmetricTridiagonal()
- {
- int size = _recurrenceJ.length;
- double[][] symmetricTridiagonal = new double[size][size];
- for (int row = 0; row < size; ++row)
- {
- for (int column = 0; column < size; ++column)
- {
- symmetricTridiagonal[row][column] = 0.;
- }
- }
- for (int row = 0; row < size; ++row)
- {
- int column = row + 1;
- if (column < size)
- {
- double sqrtRecurrenceB = java.lang.Math.sqrt (_recurrenceJ[row][column]);
- symmetricTridiagonal[row][column] = sqrtRecurrenceB;
- symmetricTridiagonal[column][row] = sqrtRecurrenceB;
- }
- symmetricTridiagonal[row][row] = _recurrenceJ[row][row];
- }
- return symmetricTridiagonal;
- }
- /**
- * Generate the Quadrature Nodes and Unscaled Weights
- *
- * @return The Quadrature Nodes and Unscaled Weights
- */
- public org.drip.numerical.common.Array2D nodesAndUnscaledWeights()
- {
- int size = _recurrenceJ.length;
- double[] nodeArray = new double[size];
- double[] unscaledWeightArray = new double[size];
- try
- {
- org.drip.numerical.eigen.EigenComponent[] orderedEigenComponentArray = new
- org.drip.numerical.eigen.QREigenComponentExtractor (
- 100,
- 1.e-06
- ).orderedEigenComponentArray (symmetricTridiagonal());
- if (null == orderedEigenComponentArray || 0 == orderedEigenComponentArray.length)
- {
- return null;
- }
- for (int componentIndex = 0;
- componentIndex < orderedEigenComponentArray.length;
- ++componentIndex)
- {
- nodeArray[componentIndex] = orderedEigenComponentArray[componentIndex].eigenValue();
- double leadingEigenComponentCoefficient =
- orderedEigenComponentArray[componentIndex].eigenVector()[0];
- unscaledWeightArray[componentIndex] = leadingEigenComponentCoefficient *
- leadingEigenComponentCoefficient;
- }
- return org.drip.numerical.common.Array2D.FromArray (
- nodeArray,
- unscaledWeightArray
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }