IntegrandGenerator.java
- package org.drip.numerical.quadrature;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>IntegrandGenerator</i> contains the Settings that enable the Generation of Integrand Quadrature and
- * Weights for the Specified Orthogonal Polynomial Scheme. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Gil, A., J. Segura, and N. M. Temme (2007): <i>Numerical Methods for Special Functions</i>
- * <b>Society for Industrial and Applied Mathematics</b> Philadelphia
- * </li>
- * <li>
- * Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
- * The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
- * </li>
- * <li>
- * Stoer, J., and R. Bulirsch (2002): <i>Introduction to Numerical Analysis 3rd Edition</i>
- * <b>Springer</b>
- * </li>
- * <li>
- * Wikipedia (2019): Gaussian Quadrature https://en.wikipedia.org/wiki/Gaussian_quadrature
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalAnalysisLibrary.md">Numerical Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Quadrature, Differentiation, Eigenization, Linear Algebra, and Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/quadrature/README.md">R<sup>1</sup> Gaussian Integration Quadrature Schemes</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IntegrandGenerator
- {
- private double _lowerBound = java.lang.Double.NaN;
- private double _upperBound = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _weightFunction = null;
- private org.drip.numerical.quadrature.OrthogonalPolynomialSuite _orthogonalPolynomialSuite = null;
- /**
- * Construct the Gauss-Legendre Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- *
- * @return The Gauss-Legendre Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussLegendre (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.Legendre(),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Gauss-Jacobi Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- * @param alpha Jacobi Alpha
- * @param beta Jacobi Beta
- *
- * @return The Gauss-Jacobi Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussJacobi (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite,
- final double alpha,
- final double beta)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.Jacobi (
- alpha,
- beta
- ),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Gauss-Chebyshev (Second-Kind) Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- *
- * @return The Gauss-Chebyshev (Second-Kind) Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussChebyshevSecondKind (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.ChebyshevSecondKind(),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Gauss-Chebyshev (First-Kind) Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- *
- * @return The Gauss-Chebyshev (First-Kind) Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussChebyshevFirstKind (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.ChebyshevFirstKind(),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Gauss-Laguerre Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- *
- * @return The Gauss-Laguerre Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussLaguerre (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.Laguerre(),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Generalized Gauss-Laguerre Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- * @param alpha Generalized Laguerre Alpha
- *
- * @return The Generalized Gauss-Laguerre Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GeneralizedGaussLaguerre (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite,
- final double alpha)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.GeneralizedLaguerre (alpha),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Construct the Gauss-Hermite Integrand Quadrature Generator
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- *
- * @return The Gauss-Hermite Integrand Quadrature Generator
- */
- public static final IntegrandGenerator GaussHermite (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite)
- {
- try
- {
- return new IntegrandGenerator (
- orthogonalPolynomialSuite,
- org.drip.numerical.quadrature.WeightFunctionBuilder.Hermite(),
- -1.,
- 1.
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * IntegrandGenerator Constructor
- *
- * @param orthogonalPolynomialSuite Orthogonal Polynomial Suite
- * @param weightFunction Weight Function
- * @param lowerBound Lower Bound
- * @param upperBound Upper Bound
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public IntegrandGenerator (
- final org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite,
- final org.drip.function.definition.R1ToR1 weightFunction,
- final double lowerBound,
- final double upperBound)
- throws java.lang.Exception
- {
- if (null == (_orthogonalPolynomialSuite = orthogonalPolynomialSuite) ||
- null == (_weightFunction = weightFunction) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_lowerBound = lowerBound) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_upperBound = upperBound) ||
- _lowerBound >= _upperBound)
- {
- throw new java.lang.Exception ("IntegrandGenerator Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Orthogonal Polynomial Suite
- *
- * @return The Orthogonal Polynomial Suite
- */
- public org.drip.numerical.quadrature.OrthogonalPolynomialSuite orthogonalPolynomialSuite()
- {
- return _orthogonalPolynomialSuite;
- }
- /**
- * Retrieve the Weight Function
- *
- * @return The Weight Function
- */
- public org.drip.function.definition.R1ToR1 weightFunction()
- {
- return _weightFunction;
- }
- /**
- * Retrieve the Lower Integration Bound
- *
- * @return The Lower Integration Bound
- */
- public double lowerBound()
- {
- return _lowerBound;
- }
- /**
- * Retrieve the Upper Integration Bound
- *
- * @return The Upper Integration Bound
- */
- public double upperBound()
- {
- return _upperBound;
- }
- /**
- * Generate the Integral of the Weight Function Over the Bounds
- *
- * @return The Integral of the Weight Function Over the Bounds
- *
- * @throws java.lang.Exception Thrown if it cannot be computed
- */
- public double weightFunctionIntegral()
- throws java.lang.Exception
- {
- return _weightFunction.integrate (
- _lowerBound,
- _upperBound
- );
- }
- /**
- * Generate the Weight at the specified Node for the specified Orthogonal Polynomial
- *
- * @param x X Node
- * @param degree Orthogonal Polynomial Degree
- *
- * @return The Weight at the specified Node for the specified Orthogonal Polynomial
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double nodeWeight (
- final double x,
- final int degree)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x))
- {
- throw new java.lang.Exception ("IntegrandGenerator::nodeWeight => Invalid Inputs");
- }
- if (0 > degree)
- {
- return 0.;
- }
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomialN =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree);
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomialNMinusOne =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree - 1);
- if (null == orthogonalPolynomialN || null == orthogonalPolynomialNMinusOne)
- {
- throw new java.lang.Exception ("IntegrandGenerator::nodeWeight => Invalid Inputs");
- }
- double weightIntegrand = new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- double pNMinusOne = orthogonalPolynomialNMinusOne.evaluate (z);
- return _weightFunction.evaluate (z) * pNMinusOne * pNMinusOne;
- }
- }.integrate (
- _lowerBound,
- _upperBound
- );
- return orthogonalPolynomialN.degreeCoefficient() * weightIntegrand / (
- orthogonalPolynomialNMinusOne.degreeCoefficient() *
- orthogonalPolynomialNMinusOne.evaluate (x) *
- orthogonalPolynomialN.derivative (
- x,
- 1
- )
- );
- }
- /**
- * Compute the Loaded Inner Product between the Polynomial identified by their Degrees
- *
- * @param degree1 Polynomial Degree #1
- * @param degree2 Polynomial Degree #2
- *
- * @return The Loaded Inner Product
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double loadedInnerProduct (
- final int degree1,
- final int degree2)
- throws java.lang.Exception
- {
- if (0 > degree1 || 0 > degree2)
- {
- return 0.;
- }
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomial1 =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree1);
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomial2 =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree2);
- if (null == orthogonalPolynomial1 || null == orthogonalPolynomial2)
- {
- throw new java.lang.Exception ("IntegrandGenerator::loadedInnerProduct => Invalid Inputs");
- }
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return z * _weightFunction.evaluate (z) * orthogonalPolynomial1.evaluate (z) *
- orthogonalPolynomial2.evaluate (z);
- }
- }.integrate (
- _lowerBound,
- _upperBound
- );
- }
- /**
- * Compute the Unloaded Inner Product between the Polynomial identified by their Degrees
- *
- * @param degree1 Polynomial Degree #1
- * @param degree2 Polynomial Degree #2
- *
- * @return The Unloaded Inner Product
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double unloadedInnerProduct (
- final int degree1,
- final int degree2)
- throws java.lang.Exception
- {
- if (0 > degree1 || 0 > degree2)
- {
- return 0.;
- }
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomial1 =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree1);
- final org.drip.numerical.quadrature.OrthogonalPolynomial orthogonalPolynomial2 =
- _orthogonalPolynomialSuite.orthogonalPolynomial (degree2);
- if (null == orthogonalPolynomial1 || null == orthogonalPolynomial2)
- {
- throw new java.lang.Exception ("IntegrandGenerator::unloadedInnerProduct => Invalid Inputs");
- }
- return new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return _weightFunction.evaluate (z) * orthogonalPolynomial1.evaluate (z) *
- orthogonalPolynomial2.evaluate (z);
- }
- }.integrate (
- _lowerBound,
- _upperBound
- );
- }
- /**
- * Generate the Golub-Welsch Matrix A Entry
- *
- * @param degree The Orthogonal Polynomial Degree
- *
- * @return The Golub-Welsch Matrix A Entry
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double golubWelschA (
- final int degree)
- throws java.lang.Exception
- {
- return loadedInnerProduct (
- degree,
- degree
- ) / unloadedInnerProduct (
- degree,
- degree
- );
- }
- /**
- * Generate the Golub-Welsch Matrix B Entry
- *
- * @param degree The Orthogonal Polynomial Degree
- *
- * @return The Golub-Welsch Matrix B Entry
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double golubWelschB (
- final int degree)
- throws java.lang.Exception
- {
- return unloadedInnerProduct (
- degree,
- degree
- ) / unloadedInnerProduct (
- degree - 1,
- degree - 1
- );
- }
- /**
- * Generate the Cross Polynomial Recurrence Matrix to be used in the Golub-Welsch Algorithm
- *
- * @return The Cross Polynomial Recurrence Matrix to be used in the Golub-Welsch Algorithm
- */
- public org.drip.numerical.quadrature.GolubWelsch generateRecurrenceMatrix()
- {
- int size = _orthogonalPolynomialSuite.size();
- double[][] golubWelschMatrix = new double[size][size];
- for (int row = 0; row < size; ++row)
- {
- for (int column = 0; column < size; ++column)
- {
- golubWelschMatrix[row][column] = column == row + 1 ? 1. : 0.;
- }
- }
- try
- {
- for (int row = 0; row < size; ++row)
- {
- golubWelschMatrix[row][row] = loadedInnerProduct (
- row,
- row
- ) / unloadedInnerProduct (
- row,
- row
- );
- if (0 < row)
- {
- golubWelschMatrix[row][row - 1] = unloadedInnerProduct (
- row,
- row
- ) / unloadedInnerProduct (
- row - 1,
- row - 1
- );
- }
- }
- return new org.drip.numerical.quadrature.GolubWelsch (golubWelschMatrix);
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Quadrature Nodes and Scaled Weights Using the Gil, Segura, and Temme (2007) Scheme
- *
- * @return The Quadrature Nodes and Scaled Weights
- */
- public org.drip.numerical.common.Array2D gilSeguraTemme2007()
- {
- org.drip.numerical.quadrature.GolubWelsch golubWelsch = generateRecurrenceMatrix();
- if (null == golubWelsch)
- {
- return null;
- }
- org.drip.numerical.common.Array2D nodesAndUnscaledWeights = golubWelsch.nodesAndUnscaledWeights();
- if (null == nodesAndUnscaledWeights)
- {
- return null;
- }
- double[] unscaledWeightArray = nodesAndUnscaledWeights.y();
- double[] nodeArray = nodesAndUnscaledWeights.x();
- int size = nodeArray.length;
- double[] scaledWeightArray = new double[size];
- try
- {
- double weightFunctionIntegral = weightFunctionIntegral();
- for (int nodeIndex = 0; nodeIndex < size; ++nodeIndex)
- {
- scaledWeightArray[nodeIndex] = unscaledWeightArray[nodeIndex] * weightFunctionIntegral;
- }
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- return org.drip.numerical.common.Array2D.FromArray (
- nodeArray,
- scaledWeightArray
- );
- }
- }