FritzJohnMultipliers.java
- package org.drip.optimization.constrained;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>FritzJohnMultipliers</i> holds the Array of the Fritz John/KKT Multipliers for the Array of the
- * Equality and the Inequality Constraints, one per each Constraint. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Boyd, S., and L. van den Berghe (2009): <i>Convex Optimization</i> <b>Cambridge University
- * Press</b> Cambridge UK
- * </li>
- * <li>
- * Eustaquio, R., E. Karas, and A. Ribeiro (2008): <i>Constraint Qualification for Nonlinear
- * Programming</i> <b>Federal University of Parana</b>
- * </li>
- * <li>
- * Karush, A. (1939): <i>Minima of Functions of Several Variables with Inequalities as Side
- * Constraints</i> <b>University of Chicago</b> Chicago IL
- * </li>
- * <li>
- * Kuhn, H. W., and A. W. Tucker (1951): Nonlinear Programming <i>Proceedings of the Second Berkeley
- * Symposium</i> <b>University of California</b> Berkeley CA 481-492
- * </li>
- * <li>
- * Ruszczynski, A. (2006): <i>Nonlinear Optimization</i> <b>Princeton University Press</b> Princeton
- * NJ
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalOptimizerLibrary.md">Numerical Optimizer Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/optimization/README.md">Necessary, Sufficient, and Regularity Checks for Gradient Descent in a Constrained Optimization Setup</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/optimization/constrained/README.md">KKT Fritz-John Constrained Optimizer</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class FritzJohnMultipliers {
- private double[] _adblEquality = null;
- private double[] _adblInequality = null;
- private double _dblObjectiveCoefficient = java.lang.Double.NaN;
- /**
- * Construct a Standard KarushKuhnTucker (KKT) Instance of the Fritz John Multipliers
- *
- * @param adblEquality Array of the Equality Constraint Coefficients
- * @param adblInequality Array of the Inequality Constraint Coefficients
- *
- * @return The KKT Instance of Fritz John Multipliers
- */
- public static final FritzJohnMultipliers KarushKuhnTucker (
- final double[] adblEquality,
- final double[] adblInequality)
- {
- try {
- return new FritzJohnMultipliers (1., adblEquality, adblInequality);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * FritzJohnMultipliers Constructor
- *
- * @param dblObjectiveCoefficient The Objective Function Coefficient
- * @param adblEquality Array of the Equality Constraint Coefficients
- * @param adblInequality Array of the Inequality Constraint Coefficients
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public FritzJohnMultipliers (
- final double dblObjectiveCoefficient,
- final double[] adblEquality,
- final double[] adblInequality)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_dblObjectiveCoefficient = dblObjectiveCoefficient))
- throw new java.lang.Exception ("FritzJohnMultipliers Constructor => Invalid Inputs");
- _adblEquality = adblEquality;
- _adblInequality = adblInequality;
- }
- /**
- * Retrieve the Fritz John Objective Function Multiplier
- *
- * @return The Fritz John Objective Function Multiplier
- */
- public double objectiveCoefficient()
- {
- return _dblObjectiveCoefficient;
- }
- /**
- * Retrieve the Array of the Equality Constraint Coefficients
- *
- * @return The Array of the Equality Constraint Coefficients
- */
- public double[] equalityConstraintCoefficient()
- {
- return _adblEquality;
- }
- /**
- * Retrieve the Array of the Inequality Constraint Coefficients
- *
- * @return The Array of the Inequality Constraint Coefficients
- */
- public double[] inequalityConstraintCoefficient()
- {
- return _adblInequality;
- }
- /**
- * Retrieve the Number of Equality Multiplier Coefficients
- *
- * @return The Number of Equality Multiplier Coefficients
- */
- public int numEqualityCoefficients()
- {
- return null == _adblEquality ? 0 : _adblEquality.length;
- }
- /**
- * Retrieve the Number of Inequality Multiplier Coefficients
- *
- * @return The Number of Inequality Multiplier Coefficients
- */
- public int numInequalityCoefficients()
- {
- return null == _adblInequality ? 0 : _adblInequality.length;
- }
- /**
- * Retrieve the Number of Total KKT Multiplier Coefficients
- *
- * @return The Number of Total KKT Multiplier Coefficients
- */
- public int numTotalCoefficients()
- {
- return numEqualityCoefficients() + numInequalityCoefficients();
- }
- /**
- * Indicate of the Multipliers constitute Valid Dual Feasibility
- *
- * @return TRUE - The Multipliers constitute Valid Dual Feasibility
- */
- public boolean dualFeasibilityCheck()
- {
- int iNumInequalityCoefficient = numInequalityCoefficients();
- for (int i = 0; i < iNumInequalityCoefficient; ++i) {
- if (0. > _adblInequality[i]) return false;
- }
- return true;
- }
- }