ForwardReverseHoldingsAllocation.java

  1. package org.drip.portfolioconstruction.allocator;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>ForwardReverseHoldingsAllocation</i> holds the Metrics that result from a Forward/Reverse Optimization
  79.  * Run.
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
  84.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/AssetAllocationAnalyticsLibrary.md">Asset Allocation Analytics</a></li>
  85.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/README.md">Portfolio Construction under Allocation Constraints</a></li>
  86.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/allocator/README.md">MVO Based Portfolio Allocation Construction</a></li>
  87.  *  </ul>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class ForwardReverseHoldingsAllocation extends
  92.     org.drip.portfolioconstruction.allocator.HoldingsAllocation
  93. {
  94.     private double _riskAversion = java.lang.Double.NaN;
  95.     private double[] _expectedAssetExcessReturnsArray = null;
  96.     private double[][] _assetExcessReturnsCovarianceMatrix = null;

  97.     /**
  98.      * Construct an Instance of ForwardReverseHoldingsAllocation from a Standard Reverse Optimize Operation
  99.      *
  100.      * @param equilibriumPortfolio The Equilibrium Portfolio
  101.      * @param assetExcessReturnsCovarianceMatrix Pair-wse Asset Excess Returns Co-variance Matrix
  102.      * @param riskAversion The Risk Aversion Parameter
  103.      *
  104.      * @return The Instance of ForwardReverseHoldingsAllocation from a Standard Reverse Optimize Operation
  105.      */

  106.     public static final ForwardReverseHoldingsAllocation Reverse (
  107.         final org.drip.portfolioconstruction.asset.Portfolio equilibriumPortfolio,
  108.         final double[][] assetExcessReturnsCovarianceMatrix,
  109.         final double riskAversion)
  110.     {
  111.         if (null == equilibriumPortfolio)
  112.         {
  113.             return null;
  114.         }

  115.         double[] assetWeightArray = equilibriumPortfolio.weightArray();

  116.         int assetCount = assetWeightArray.length;

  117.         double[] expectedAssetExcessReturnsArray = org.drip.numerical.linearalgebra.Matrix.Product (
  118.             assetExcessReturnsCovarianceMatrix,
  119.             assetWeightArray
  120.         );

  121.         if (null == expectedAssetExcessReturnsArray)
  122.         {
  123.             return null;
  124.         }

  125.         for (int assetIndex = 0; assetIndex < assetCount; ++assetIndex)
  126.         {
  127.             expectedAssetExcessReturnsArray[assetIndex] = expectedAssetExcessReturnsArray [assetIndex] *
  128.                 riskAversion;
  129.         }

  130.         return ForwardReverseHoldingsAllocation.Standard (
  131.             equilibriumPortfolio,
  132.             riskAversion,
  133.             assetExcessReturnsCovarianceMatrix,
  134.             expectedAssetExcessReturnsArray
  135.         );
  136.     }

  137.     /**
  138.      * Construct an Instance of ForwardReverseHoldingsAllocation from a Standard Forward Optimize Operation
  139.      *
  140.      * @param assetIDArray The Array of the IDs of the Assets in the Portfolio
  141.      * @param expectedAssetExcessReturnsArray Array of Expected Excess Returns
  142.      * @param assetExcessReturnsCovarianceMatrix Excess Returns Co-variance Matrix
  143.      * @param riskAversion The Risk Aversion Parameter
  144.      *
  145.      * @return The Instance of ForwardReverseHoldingsAllocation from a Standard Forward Optimize Operation
  146.      */

  147.     public static final ForwardReverseHoldingsAllocation Forward (
  148.         final java.lang.String[] assetIDArray,
  149.         final double[] expectedAssetExcessReturnsArray,
  150.         final double[][] assetExcessReturnsCovarianceMatrix,
  151.         final double riskAversion)
  152.     {
  153.         if (null == assetIDArray)
  154.         {
  155.             return null;
  156.         }

  157.         int assetCount = assetIDArray.length;

  158.         double[] assetWeightArray = org.drip.numerical.linearalgebra.Matrix.Product (
  159.             org.drip.numerical.linearalgebra.Matrix.InvertUsingGaussianElimination (
  160.                 assetExcessReturnsCovarianceMatrix
  161.             ),
  162.             expectedAssetExcessReturnsArray
  163.         );

  164.         if (null == assetWeightArray || assetCount != assetWeightArray.length)
  165.         {
  166.             return null;
  167.         }

  168.         for (int assetIndex = 0; assetIndex < assetCount; ++assetIndex)
  169.         {
  170.             assetWeightArray[assetIndex] = assetWeightArray[assetIndex] / riskAversion;
  171.         }

  172.         return ForwardReverseHoldingsAllocation.Standard (
  173.             org.drip.portfolioconstruction.asset.Portfolio.Standard (
  174.                 assetIDArray,
  175.                 assetWeightArray
  176.             ),
  177.             riskAversion,
  178.             assetExcessReturnsCovarianceMatrix,
  179.             expectedAssetExcessReturnsArray
  180.         );
  181.     }

  182.     /**
  183.      * Construct a Standard Instance of ForwardReverseHoldingsAllocation
  184.      *
  185.      * @param equilibriumPortfolio The Optimal Equilibrium Portfolio
  186.      * @param riskAversion The Risk Aversion Parameter
  187.      * @param assetExcessReturnsCovarianceMatrix Pair-wise Asset Excess Returns Co-variance Matrix
  188.      * @param expectedAssetExcessReturnsArray Array of Expected Excess Returns
  189.      *
  190.      * @return The Standard Instance of ForwardReverseHoldingsAllocation
  191.      */

  192.     public static final ForwardReverseHoldingsAllocation Standard (
  193.         final org.drip.portfolioconstruction.asset.Portfolio equilibriumPortfolio,
  194.         final double riskAversion,
  195.         final double[][] assetExcessReturnsCovarianceMatrix,
  196.         final double[] expectedAssetExcessReturnsArray)
  197.     {
  198.         if (null == equilibriumPortfolio || null == expectedAssetExcessReturnsArray)
  199.         {
  200.             return null;
  201.         }

  202.         double[] assetWeightArray = equilibriumPortfolio.weightArray();

  203.         double portfolioExcessReturnsMean = 0.;
  204.         int assetCount = assetWeightArray.length;
  205.         double portfolioExcessReturnsVariance = 0.;

  206.         if (assetCount != expectedAssetExcessReturnsArray.length)
  207.         {
  208.             return null;
  209.         }

  210.         double[] impliedBetaArray = org.drip.numerical.linearalgebra.Matrix.Product (
  211.             assetExcessReturnsCovarianceMatrix,
  212.             assetWeightArray
  213.         );

  214.         if (null == impliedBetaArray)
  215.         {
  216.             return null;
  217.         }

  218.         for (int assetIndexI = 0; assetIndexI < assetCount; ++assetIndexI)
  219.         {
  220.             portfolioExcessReturnsMean += assetWeightArray[assetIndexI] *
  221.                 expectedAssetExcessReturnsArray[assetIndexI];

  222.             for (int assetIndexJ = 0; assetIndexJ < assetCount; ++assetIndexJ)
  223.             {
  224.                 portfolioExcessReturnsVariance += assetWeightArray[assetIndexI] *
  225.                     assetWeightArray[assetIndexJ] *
  226.                     assetExcessReturnsCovarianceMatrix[assetIndexI][assetIndexJ];
  227.             }
  228.         }

  229.         for (int assetIndex = 0; assetIndex < assetCount; ++assetIndex)
  230.         {
  231.             impliedBetaArray[assetIndex] = impliedBetaArray[assetIndex] / portfolioExcessReturnsVariance;
  232.         }

  233.         double portfolioExcessReturnsSigma = java.lang.Math.sqrt (portfolioExcessReturnsVariance);

  234.         try
  235.         {
  236.             return new ForwardReverseHoldingsAllocation (
  237.                 equilibriumPortfolio,
  238.                 new org.drip.portfolioconstruction.asset.PortfolioMetrics (
  239.                     portfolioExcessReturnsMean,
  240.                     portfolioExcessReturnsVariance,
  241.                     portfolioExcessReturnsSigma,
  242.                     portfolioExcessReturnsMean / portfolioExcessReturnsSigma,
  243.                     impliedBetaArray
  244.                 ),
  245.                 riskAversion,
  246.                 assetExcessReturnsCovarianceMatrix,
  247.                 expectedAssetExcessReturnsArray
  248.             );
  249.         }
  250.         catch (java.lang.Exception e)
  251.         {
  252.             e.printStackTrace();
  253.         }

  254.         return null;
  255.     }

  256.     /**
  257.      * ForwardReverseHoldingsAllocation Constructor
  258.      *
  259.      * @param optimalEquilibriumPortfolio The Optimal Equilibrium Portfolio
  260.      * @param optimalEquilibriumPortfolioMetrics The Optimal Equilibrium Portfolio Metrics
  261.      * @param riskAversion The Risk Aversion Parameter
  262.      * @param assetExcessReturnsCovarianceMatrix Pair-wise Asset Excess Returns Co-variance Matrix
  263.      * @param expectedAssetExcessReturnsArray Array of Expected Excess Returns
  264.      *
  265.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  266.      */

  267.     public ForwardReverseHoldingsAllocation (
  268.         final org.drip.portfolioconstruction.asset.Portfolio optimalEquilibriumPortfolio,
  269.         final org.drip.portfolioconstruction.asset.PortfolioMetrics optimalEquilibriumPortfolioMetrics,
  270.         final double riskAversion,
  271.         final double[][] assetExcessReturnsCovarianceMatrix,
  272.         final double[] expectedAssetExcessReturnsArray)
  273.         throws java.lang.Exception
  274.     {
  275.         super (
  276.             optimalEquilibriumPortfolio,
  277.             optimalEquilibriumPortfolioMetrics
  278.         );

  279.         if (null == (_assetExcessReturnsCovarianceMatrix = assetExcessReturnsCovarianceMatrix) ||
  280.             !org.drip.numerical.common.NumberUtil.IsValid (_riskAversion = riskAversion) ||
  281.             null == (_expectedAssetExcessReturnsArray = expectedAssetExcessReturnsArray))
  282.         {
  283.             throw new java.lang.Exception ("ForwardReverseHoldingsAllocation Constructor => Invalid Inputs");
  284.         }
  285.     }

  286.     /**
  287.      * Retrieve the Excess Returns Co-variance Matrix between each Pair-wise Asset
  288.      *
  289.      * @return The Excess Returns Co-variance Matrix between each Pair-wise Asset
  290.      */

  291.     public double[][] assetExcessReturnsCovarianceMatrix()
  292.     {
  293.         return _assetExcessReturnsCovarianceMatrix;
  294.     }

  295.     /**
  296.      * Retrieve the Risk Aversion Coefficient
  297.      *
  298.      * @return The Risk Aversion Coefficient
  299.      */

  300.     public double riskAversion()
  301.     {
  302.         return _riskAversion;
  303.     }

  304.     /**
  305.      * Retrieve the Array of Expected Excess Returns Array for each Asset
  306.      *
  307.      * @return The Array of Expected Excess Returns Array for each Asset
  308.      */

  309.     public double[] expectedAssetExcessReturnsArray()
  310.     {
  311.         return _expectedAssetExcessReturnsArray;
  312.     }

  313.     /**
  314.      * Compute the Portfolio Relative Metrics using the specified Benchmark
  315.      *
  316.      * @param benchmarkPortfolioMetrics The Benchmark Metrics
  317.      *
  318.      * @return The Portfolio Relative Metrics using the specified Benchmark
  319.      */

  320.     public org.drip.portfolioconstruction.asset.PortfolioBenchmarkMetrics benchmarkMetrics (
  321.         final org.drip.portfolioconstruction.asset.PortfolioMetrics benchmarkPortfolioMetrics)
  322.     {
  323.         if (null == benchmarkPortfolioMetrics)
  324.         {
  325.             return null;
  326.         }

  327.         org.drip.portfolioconstruction.asset.PortfolioMetrics portfolioMetrics = optimalMetrics();

  328.         try
  329.         {
  330.             double beta = org.drip.numerical.linearalgebra.Matrix.DotProduct (
  331.                 optimalPortfolio().weightArray(),
  332.                 benchmarkPortfolioMetrics.impliedBeta()
  333.             );

  334.             double activeBeta = beta - 1.;

  335.             double portfolioExcessReturnsMean = portfolioMetrics.excessReturnsMean();

  336.             double benchmarkExcessReturnsMean = benchmarkPortfolioMetrics.excessReturnsMean();

  337.             double benchmarkExcessReturnsVariance = benchmarkPortfolioMetrics.excessReturnsVariance();

  338.             double residualRisk = java.lang.Math.sqrt (
  339.                 portfolioMetrics.excessReturnsVariance() - beta * beta * benchmarkExcessReturnsVariance
  340.             );

  341.             return new org.drip.portfolioconstruction.asset.PortfolioBenchmarkMetrics (
  342.                 beta,
  343.                 activeBeta,
  344.                 java.lang.Math.sqrt (
  345.                     residualRisk * residualRisk + activeBeta * activeBeta * benchmarkExcessReturnsVariance
  346.                 ),
  347.                 portfolioExcessReturnsMean - benchmarkExcessReturnsMean,
  348.                 residualRisk,
  349.                 portfolioExcessReturnsMean - beta * benchmarkExcessReturnsMean
  350.             );
  351.         }
  352.         catch (java.lang.Exception e)
  353.         {
  354.             e.printStackTrace();
  355.         }

  356.         return null;
  357.     }
  358. }