QuadraticMeanVarianceOptimizer.java
package org.drip.portfolioconstruction.allocator;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>QuadraticMeanVarianceOptimizer</i> builds an Optimal Portfolio Based on MPT Using the Asset Pool
* Statistical Properties using a Quadratic Optimization Function and Equality Constraints (if any).
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/AssetAllocationAnalyticsLibrary.md">Asset Allocation Analytics</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/README.md">Portfolio Construction under Allocation Constraints</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/allocator/README.md">MVO Based Portfolio Allocation Construction</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class QuadraticMeanVarianceOptimizer extends
org.drip.portfolioconstruction.allocator.MeanVarianceOptimizer
{
protected org.drip.portfolioconstruction.allocator.HoldingsAllocationControl constrainedPCP (
final org.drip.portfolioconstruction.allocator.HoldingsAllocationControl
designPortfolioConstructionParameters,
final double returnsConstraint)
{
try {
return new org.drip.portfolioconstruction.allocator.HoldingsAllocationControl (
designPortfolioConstructionParameters.assetIDArray(),
designPortfolioConstructionParameters.customRiskUtilitySettings(),
new org.drip.portfolioconstruction.allocator.EqualityConstraintSettings (
designPortfolioConstructionParameters.equalityConstraintSettings().constraintType() |
org.drip.portfolioconstruction.allocator.EqualityConstraintSettings.RETURNS_CONSTRAINT,
returnsConstraint
)
);
}
catch (java.lang.Exception e)
{
e.printStackTrace();
}
return null;
}
/**
* Empty QuadraticMeanVarianceOptimizer Constructor
*/
public QuadraticMeanVarianceOptimizer()
{
}
@Override public org.drip.portfolioconstruction.allocator.HoldingsAllocation
longOnlyMaximumReturnsAllocate (
final org.drip.portfolioconstruction.allocator.HoldingsAllocationControl
portfolioConstructionParameters,
final org.drip.portfolioconstruction.params.AssetUniverseStatisticalProperties
assetUniverseStatisticalProperties)
{
if (null == portfolioConstructionParameters || null == assetUniverseStatisticalProperties)
{
return null;
}
java.lang.String[] assetIDArray = portfolioConstructionParameters.assetIDArray();
int assetCount = assetIDArray.length;
org.drip.portfolioconstruction.asset.AssetComponent[] assetComponentArray = new
org.drip.portfolioconstruction.asset.AssetComponent[assetCount];
double[] expectedAssetReturnsArray = assetUniverseStatisticalProperties.expectedReturns (
assetIDArray
);
if (null == expectedAssetReturnsArray || assetCount != expectedAssetReturnsArray.length)
{
return null;
}
double maximumReturns = expectedAssetReturnsArray[0];
java.lang.String maximumReturnsAssetID = assetIDArray[0];
for (int i = 1; i < assetCount; ++i)
{
if (expectedAssetReturnsArray[i] > maximumReturns)
{
maximumReturnsAssetID = assetIDArray[i];
maximumReturns = expectedAssetReturnsArray[i];
}
}
try
{
for (int i = 0; i < assetCount; ++i)
{
assetComponentArray[i] = new org.drip.portfolioconstruction.asset.AssetComponent (
assetIDArray[i],
assetIDArray[i].equalsIgnoreCase (maximumReturnsAssetID) ? 1. : 0.
);
}
}
catch (java.lang.Exception e)
{
e.printStackTrace();
return null;
}
return org.drip.portfolioconstruction.allocator.HoldingsAllocation.Create (
assetComponentArray,
assetUniverseStatisticalProperties
);
}
@Override public org.drip.portfolioconstruction.allocator.HoldingsAllocation
globalMinimumVarianceAllocate (
final org.drip.portfolioconstruction.allocator.HoldingsAllocationControl
portfolioConstructionParameters,
final org.drip.portfolioconstruction.params.AssetUniverseStatisticalProperties
assetUniverseStatisticalProperties)
{
if (null == portfolioConstructionParameters || null == assetUniverseStatisticalProperties)
{
return null;
}
java.lang.String[] assetIDArray = portfolioConstructionParameters.assetIDArray();
int assetCount = assetIDArray.length;
org.drip.function.rdtor1.LagrangianMultivariate lagrangianMultivariate = null;
org.drip.portfolioconstruction.asset.AssetComponent[] assetComponentArray = new
org.drip.portfolioconstruction.asset.AssetComponent[assetCount];
try
{
lagrangianMultivariate = new org.drip.function.rdtor1.LagrangianMultivariate (
portfolioConstructionParameters.customRiskUtilitySettings().riskObjectiveUtility (
assetIDArray,
assetUniverseStatisticalProperties
),
new org.drip.function.definition.RdToR1[]
{
portfolioConstructionParameters.fullyInvestedConstraint()
}
);
}
catch (java.lang.Exception e)
{
e.printStackTrace();
}
int lagrangianDimension = lagrangianMultivariate.dimension();
double[] rhsArray = new double[lagrangianDimension];
double[] variateArray = new double[lagrangianDimension];
double riskToleranceFactor =
portfolioConstructionParameters.customRiskUtilitySettings().riskTolerance();
double[] equalityConstraintRHSArray = portfolioConstructionParameters.equalityConstraintRHS();
for (int lagrangianIndex = 0; lagrangianIndex < lagrangianDimension; ++lagrangianIndex)
{
variateArray[lagrangianIndex] = 0.;
if (lagrangianIndex < assetCount)
{
if (0. != riskToleranceFactor)
{
org.drip.portfolioconstruction.params.AssetStatisticalProperties
assetStatisticalProperties =
assetUniverseStatisticalProperties.assetStatisticalProperties (
assetIDArray[lagrangianIndex]
);
if (null == assetStatisticalProperties)
{
return null;
}
rhsArray[lagrangianIndex] = assetStatisticalProperties.expectedReturn() *
riskToleranceFactor;
}
else
{
rhsArray[lagrangianIndex] = 0.;
}
}
else
{
rhsArray[lagrangianIndex] = equalityConstraintRHSArray[lagrangianIndex - assetCount];
}
}
org.drip.numerical.linearalgebra.LinearizationOutput linearizationOutput =
org.drip.numerical.linearalgebra.LinearSystemSolver.SolveUsingMatrixInversion (
lagrangianMultivariate.hessian (variateArray),
rhsArray
);
if (null == linearizationOutput)
{
return null;
}
double[] assetHoldingsArray = linearizationOutput.getTransformedRHS();
if (null == assetHoldingsArray || assetHoldingsArray.length != lagrangianDimension)
{
return null;
}
try
{
for (int assetIndex = 0; assetIndex < assetCount; ++assetIndex)
{
assetComponentArray[assetIndex] = new org.drip.portfolioconstruction.asset.AssetComponent (
assetIDArray[assetIndex],
assetHoldingsArray[assetIndex]
);
}
}
catch (java.lang.Exception e)
{
e.printStackTrace();
return null;
}
return org.drip.portfolioconstruction.allocator.HoldingsAllocation.Create (
assetComponentArray,
assetUniverseStatisticalProperties
);
}
@Override public org.drip.portfolioconstruction.allocator.HoldingsAllocation allocate (
final org.drip.portfolioconstruction.allocator.HoldingsAllocationControl
portfolioConstructionParameters,
final org.drip.portfolioconstruction.params.AssetUniverseStatisticalProperties
assetUniverseStatisticalProperties)
{
if (null == portfolioConstructionParameters || null == assetUniverseStatisticalProperties)
{
return null;
}
java.lang.String[] assetIDArray = portfolioConstructionParameters.assetIDArray();
int assetCount = assetIDArray.length;
org.drip.function.rdtor1.LagrangianMultivariate lagrangianMultivariate = null;
org.drip.portfolioconstruction.asset.AssetComponent[] assetComponentArray = new
org.drip.portfolioconstruction.asset.AssetComponent[assetCount];
try
{
lagrangianMultivariate = new org.drip.function.rdtor1.LagrangianMultivariate (
portfolioConstructionParameters.customRiskUtilitySettings().riskObjectiveUtility (
assetIDArray,
assetUniverseStatisticalProperties
),
portfolioConstructionParameters.equalityConstraintArray (
assetUniverseStatisticalProperties
)
);
}
catch (java.lang.Exception e)
{
e.printStackTrace();
}
int lagrangianDimension = lagrangianMultivariate.dimension();
double[] variateArray = new double[lagrangianDimension];
org.drip.numerical.linearalgebra.LinearizationOutput linearizationOutput =
org.drip.numerical.linearalgebra.LinearSystemSolver.SolveUsingMatrixInversion (
lagrangianMultivariate.hessian (variateArray),
lagrangianMultivariate.jacobian (variateArray)
);
if (null == linearizationOutput)
{
return null;
}
double[] assetHoldingsArray = linearizationOutput.getTransformedRHS();
if (null == assetHoldingsArray || assetHoldingsArray.length != lagrangianDimension)
{
return null;
}
try
{
for (int assetIndex = 0; assetIndex < assetCount; ++assetIndex)
{
assetComponentArray[assetIndex] = new org.drip.portfolioconstruction.asset.AssetComponent (
assetIDArray[assetIndex],
-1. * assetHoldingsArray[assetIndex]
);
}
}
catch (java.lang.Exception e)
{
e.printStackTrace();
return null;
}
return org.drip.portfolioconstruction.allocator.HoldingsAllocation.Create (
assetComponentArray,
assetUniverseStatisticalProperties
);
}
}