BlackLittermanCustomConfidenceOutput.java
package org.drip.portfolioconstruction.bayesian;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>BlackLittermanCustomConfidenceOutput</i> holds the Outputs generated from a Custom Confidence Black
* Litterman Bayesian Combination Run. The References are:
*
* <br><br>
* <ul>
* <li>
* He. G., and R. Litterman (1999): <i>The Intuition behind the Black-Litterman Model
* Portfolios</i> <b>Goldman Sachs Asset Management</b>
* </li>
* <li>
* Idzorek, T. (2005): <i>A Step-by-Step Guide to the Black-Litterman Model: Incorporating
* User-Specified Confidence Levels</i> <b>Ibbotson Associates</b> Chicago, IL
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/AssetAllocationAnalyticsLibrary.md">Asset Allocation Analytics</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/README.md">Portfolio Construction under Allocation Constraints</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/portfolioconstruction/bayesian/README.md">Black Litterman Bayesian Portfolio Construction</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class BlackLittermanCustomConfidenceOutput
extends org.drip.portfolioconstruction.bayesian.BlackLittermanOutput
{
private org.drip.measure.bayesian.R1MultivariateConvolutionMetrics _jointPosteriorMetrics = null;
/**
* BlackLittermanCustomConfidenceOutput Constructor
*
* @param forwardReverseOptimizationOutput The Adjusted Forward Reverse Equilibrium Optimization Output
* @param allocationAdjustmentTiltArray Array of the Allocation Adjustment Tilts
* @param jointPosteriorMetrics The Bayesian Joint/Posterior Metrics Instance
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public BlackLittermanCustomConfidenceOutput (
final org.drip.portfolioconstruction.allocator.ForwardReverseHoldingsAllocation
forwardReverseOptimizationOutput,
final double[] allocationAdjustmentTiltArray,
final org.drip.measure.bayesian.R1MultivariateConvolutionMetrics jointPosteriorMetrics)
throws java.lang.Exception
{
super (
forwardReverseOptimizationOutput,
allocationAdjustmentTiltArray
);
if (null == (_jointPosteriorMetrics = jointPosteriorMetrics))
{
throw new java.lang.Exception
("BlackLittermanCustomConfidenceOutput Constructor => Invalid Inputs");
}
}
/**
* Retrieve the Bayesian Joint/Posterior Metrics
*
* @return The Bayesian Joint/Posterior Metrics
*/
public org.drip.measure.bayesian.R1MultivariateConvolutionMetrics jointPosteriorMetrics()
{
return _jointPosteriorMetrics;
}
}