LagrangePolynomialStretchRegressor.java

  1. package org.drip.regression.spline;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  * Copyright (C) 2014 Lakshmi Krishnamurthy
  13.  * Copyright (C) 2013 Lakshmi Krishnamurthy
  14.  * Copyright (C) 2012 Lakshmi Krishnamurthy
  15.  *
  16.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  17.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  18.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  19.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  20.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  21.  *      and computational support.
  22.  *  
  23.  *      https://lakshmidrip.github.io/DROP/
  24.  *  
  25.  *  DROP is composed of three modules:
  26.  *  
  27.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  28.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  29.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  30.  *
  31.  *  DROP Product Core implements libraries for the following:
  32.  *  - Fixed Income Analytics
  33.  *  - Loan Analytics
  34.  *  - Transaction Cost Analytics
  35.  *
  36.  *  DROP Portfolio Core implements libraries for the following:
  37.  *  - Asset Allocation Analytics
  38.  *  - Asset Liability Management Analytics
  39.  *  - Capital Estimation Analytics
  40.  *  - Exposure Analytics
  41.  *  - Margin Analytics
  42.  *  - XVA Analytics
  43.  *
  44.  *  DROP Computational Core implements libraries for the following:
  45.  *  - Algorithm Support
  46.  *  - Computation Support
  47.  *  - Function Analysis
  48.  *  - Model Validation
  49.  *  - Numerical Analysis
  50.  *  - Numerical Optimizer
  51.  *  - Spline Builder
  52.  *  - Statistical Learning
  53.  *
  54.  *  Documentation for DROP is Spread Over:
  55.  *
  56.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  57.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  58.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  59.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  60.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  61.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  62.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  63.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  64.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  65.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  66.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  67.  *
  68.  *  Licensed under the Apache License, Version 2.0 (the "License");
  69.  *      you may not use this file except in compliance with the License.
  70.  *  
  71.  *  You may obtain a copy of the License at
  72.  *      http://www.apache.org/licenses/LICENSE-2.0
  73.  *  
  74.  *  Unless required by applicable law or agreed to in writing, software
  75.  *      distributed under the License is distributed on an "AS IS" BASIS,
  76.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  77.  *  
  78.  *  See the License for the specific language governing permissions and
  79.  *      limitations under the License.
  80.  */

  81. /**
  82.  * <i>LagrangePolynomialStretchRegressor</i> implements the local control basis spline regressor for the
  83.  * given basis spline. As part of the regression run, it executes the following:
  84.  *
  85.  * <br><br>
  86.  *  <ul>
  87.  *      <li>
  88.  *          Calibrate and compute the left and the right Jacobian.
  89.  *      </li>
  90.  *      <li>
  91.  *          Insert the Local Control Hermite, Cardinal, and Catmull-Rom knots.
  92.  *      </li>
  93.  *      <li>
  94.  *          Compute an intermediate value Jacobian.
  95.  *      </li>
  96.  *  </ul>
  97.  *
  98.  * <br><br>
  99.  *  <ul>
  100.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  101.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationSupportLibrary.md">Computation Support</a></li>
  102.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/regression/README.md">Regression Engine Core and the Unit Regressors</a></li>
  103.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/regression/spline/README.md">Custom Basis Spline Regression Engine</a></li>
  104.  *  </ul>
  105.  * <br><br>
  106.  *
  107.  * @author Lakshmi Krishnamurthy
  108.  */

  109. public class LagrangePolynomialStretchRegressor extends org.drip.regression.core.UnitRegressionExecutor {
  110.     private boolean _bLocallyMonotone = false;
  111.     private double _dblValue = java.lang.Double.NaN;
  112.     private org.drip.spline.segment.Monotonocity _sm = null;
  113.     private org.drip.numerical.differentiation.WengertJacobian _wj = null;
  114.     private org.drip.spline.stretch.SingleSegmentSequence _sss = null;

  115.     public LagrangePolynomialStretchRegressor (
  116.         final java.lang.String strName,
  117.         final java.lang.String strScenarioName)
  118.         throws java.lang.Exception
  119.     {
  120.         super (strName, strScenarioName);

  121.         _sss = new org.drip.spline.stretch.SingleSegmentLagrangePolynomial (new double[] {1., 2., 3., 4.});
  122.     }

  123.     @Override public boolean preRegression()
  124.     {
  125.         try {
  126.             return _sss.setup (1., new double[] {1., 2., 3., 4.}, null,
  127.                 org.drip.spline.stretch.BoundarySettings.NaturalStandard(),
  128.                     org.drip.spline.stretch.MultiSegmentSequence.CALIBRATE);
  129.         } catch (java.lang.Exception e) {
  130.             e.printStackTrace();
  131.         }

  132.         return false;
  133.     }

  134.     @Override public boolean execRegression()
  135.     {
  136.         try {
  137.             if (!org.drip.numerical.common.NumberUtil.IsValid (_dblValue = _sss.responseValue (2.16)))
  138.                 return false;

  139.             _bLocallyMonotone = _sss.isLocallyMonotone();
  140.         } catch (java.lang.Exception e) {
  141.             e.printStackTrace();

  142.             return false;
  143.         }

  144.         if (null == (_wj = _sss.jackDResponseDCalibrationInput (2.16, 1))) return false;

  145.         return null != (_sm = _sss.monotoneType (2.16));
  146.     }

  147.     @Override public boolean postRegression (
  148.         final org.drip.regression.core.RegressionRunDetail rnvd)
  149.     {
  150.         if (!rnvd.set ("LPSR_Value", "" + _dblValue)) return false;

  151.         if (!rnvd.set ("LPSR_WJ", _wj.displayString())) return false;

  152.         if (!rnvd.set ("LPSR_SM", _sm.toString())) return false;

  153.         return rnvd.set ("LPSR_LocallyMonotone", "" + _bLocallyMonotone);
  154.     }
  155. }