AdaptiveOptimalCostTrajectory.java

  1. package org.drip.sample.almgren2009;

  2. import org.drip.execution.hjb.*;
  3. import org.drip.execution.latent.MarketStateSystemic;
  4. import org.drip.measure.dynamics.DiffusionEvaluatorOrnsteinUhlenbeck;
  5. import org.drip.measure.process.DiffusionEvolver;
  6. import org.drip.measure.realization.*;
  7. import org.drip.numerical.common.FormatUtil;
  8. import org.drip.service.env.EnvManager;

  9. /*
  10.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  11.  */

  12. /*!
  13.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  14.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  15.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  16.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  17.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  18.  *
  19.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  20.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  21.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  22.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  23.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  24.  *      and computational support.
  25.  *  
  26.  *      https://lakshmidrip.github.io/DROP/
  27.  *  
  28.  *  DROP is composed of three modules:
  29.  *  
  30.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  31.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  32.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  33.  *
  34.  *  DROP Product Core implements libraries for the following:
  35.  *  - Fixed Income Analytics
  36.  *  - Loan Analytics
  37.  *  - Transaction Cost Analytics
  38.  *
  39.  *  DROP Portfolio Core implements libraries for the following:
  40.  *  - Asset Allocation Analytics
  41.  *  - Asset Liability Management Analytics
  42.  *  - Capital Estimation Analytics
  43.  *  - Exposure Analytics
  44.  *  - Margin Analytics
  45.  *  - XVA Analytics
  46.  *
  47.  *  DROP Computational Core implements libraries for the following:
  48.  *  - Algorithm Support
  49.  *  - Computation Support
  50.  *  - Function Analysis
  51.  *  - Model Validation
  52.  *  - Numerical Analysis
  53.  *  - Numerical Optimizer
  54.  *  - Spline Builder
  55.  *  - Statistical Learning
  56.  *
  57.  *  Documentation for DROP is Spread Over:
  58.  *
  59.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  60.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  61.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  62.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  63.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  64.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  65.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  66.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  67.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  68.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  69.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  70.  *
  71.  *  Licensed under the Apache License, Version 2.0 (the "License");
  72.  *      you may not use this file except in compliance with the License.
  73.  *  
  74.  *  You may obtain a copy of the License at
  75.  *      http://www.apache.org/licenses/LICENSE-2.0
  76.  *  
  77.  *  Unless required by applicable law or agreed to in writing, software
  78.  *      distributed under the License is distributed on an "AS IS" BASIS,
  79.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  80.  *  
  81.  *  See the License for the specific language governing permissions and
  82.  *      limitations under the License.
  83.  */

  84. /**
  85.  * <i>AdaptiveOptimalCostTrajectory</i> traces a Sample Realization of the Adaptive Cost Strategy using the
  86.  * Market State Trajectory the follows the Zero Mean Ornstein-Uhlenbeck Evolution Dynamics. The References
  87.  * are:
  88.  *
  89.  * <br><br>
  90.  *  <ul>
  91.  *      <li>
  92.  *          Almgren, R. F., and N. Chriss (2000): Optimal Execution of Portfolio Transactions <i>Journal of
  93.  *              Risk</i> <b>3 (2)</b> 5-39
  94.  *      </li>
  95.  *      <li>
  96.  *          Almgren, R. F. (2009): Optimal Trading in a Dynamic Market
  97.  *              https://www.math.nyu.edu/financial_mathematics/content/02_financial/2009-2.pdf
  98.  *      </li>
  99.  *      <li>
  100.  *          Almgren, R. F. (2012): Optimal Trading with Stochastic Liquidity and Volatility <i>SIAM Journal
  101.  *              of Financial Mathematics</i> <b>3 (1)</b> 163-181
  102.  *      </li>
  103.  *      <li>
  104.  *          Geman, H., D. B. Madan, and M. Yor (2001): Time Changes for Levy Processes <i>Mathematical
  105.  *              Finance</i> <b>11 (1)</b> 79-96
  106.  *      </li>
  107.  *      <li>
  108.  *          Walia, N. (2006): Optimal Trading: Dynamic Stock Liquidation Strategies <b>Princeton
  109.  *              University</b>
  110.  *      </li>
  111.  *  </ul>
  112.  *
  113.  * <br><br>
  114.  *  <ul>
  115.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  116.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/TransactionCostAnalyticsLibrary.md">Transaction Cost Analytics</a></li>
  117.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  118.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/almgren2009/README.md">Almgren (2009) Optimal Adaptive HJB</a></li>
  119.  *  </ul>
  120.  * <br><br>
  121.  *
  122.  * @author Lakshmi Krishnamurthy
  123.  */

  124. public class AdaptiveOptimalCostTrajectory {

  125.     public static final void main (
  126.         final String[] astrArgs)
  127.         throws Exception
  128.     {
  129.         EnvManager.InitEnv (
  130.             "",
  131.             true
  132.         );

  133.         double dblTime = 0.;
  134.         double dblBurstiness = 1.;
  135.         double dblDimensionlessRiskAversion = 0.1;
  136.         double dblRelaxationTime = 1.;
  137.         double dblSimulationTime = 10.;
  138.         double dblTimeInterval = 0.25;
  139.         double dblInitialMarketState = -0.5;

  140.         double dblNonDimensionalHoldings = 1.;
  141.         int iNumTimeNode = (int) (dblSimulationTime / dblTimeInterval);
  142.         MarketStateSystemic[] aMSS = new MarketStateSystemic[iNumTimeNode + 1];

  143.         aMSS[0] = new MarketStateSystemic (dblInitialMarketState);

  144.         DiffusionEvaluatorOrnsteinUhlenbeck deou = DiffusionEvaluatorOrnsteinUhlenbeck.ZeroMean (
  145.             dblBurstiness,
  146.             dblRelaxationTime
  147.         );

  148.         DiffusionEvolver oup1D = new DiffusionEvolver (deou);

  149.         for (int i = 0; i < iNumTimeNode; ++i) {
  150.             JumpDiffusionEdge gi = oup1D.weinerIncrement (
  151.                 new JumpDiffusionVertex (
  152.                     dblTime,
  153.                     aMSS[i].common(),
  154.                     0.,
  155.                     false
  156.                 ),
  157.                 dblTimeInterval
  158.             );

  159.             dblTime += dblTimeInterval;

  160.             aMSS[i + 1] = new MarketStateSystemic (aMSS[i].common() + gi.deterministic() + gi.diffusionStochastic());
  161.         }

  162.         NonDimensionalCostEvolverSystemic ndces = NonDimensionalCostEvolverSystemic.Standard (deou);

  163.         NonDimensionalCostSystemic ndcs = NonDimensionalCostSystemic.Zero();

  164.         System.out.println();

  165.         System.out.println ("\t||-------------------------------------------------------------------||");

  166.         System.out.println ("\t||      L -> R:                                                      ||");

  167.         System.out.println ("\t||              - Non Dimensional Time                               ||");

  168.         System.out.println ("\t||              - Realized Market State                              ||");

  169.         System.out.println ("\t||              - Non Dimensional Cost                               ||");

  170.         System.out.println ("\t||              - Non Dimensional Cost Gradient                      ||");

  171.         System.out.println ("\t||              - Non Dimensional Cost Jacobian                      ||");

  172.         System.out.println ("\t||              - Non Dimensional Cost Trade Velocity                ||");

  173.         System.out.println ("\t||              - Non Dimensional Outstanding Holdings               ||");

  174.         System.out.println ("\t||-------------------------------------------------------------------||");

  175.         System.out.println ("\t||" +
  176.             FormatUtil.FormatDouble (0., 1, 2, 1.) + " => " +
  177.             FormatUtil.FormatDouble (aMSS[0].common(), 1, 4, 1.) + " | " +
  178.             FormatUtil.FormatDouble (ndcs.realization(), 1, 4, 1.) + " | " +
  179.             FormatUtil.FormatDouble (ndcs.gradient(), 1, 4, 1.) + " | " +
  180.             FormatUtil.FormatDouble (ndcs.jacobian(), 1, 4, 1.) + " | " +
  181.             FormatUtil.FormatDouble (ndcs.nonDimensionalTradeRate(), 1, 4, 1.) + " | " +
  182.             FormatUtil.FormatDouble (dblNonDimensionalHoldings, 1, 4, 1.) + " ||"
  183.         );

  184.         for (int i = 1; i < iNumTimeNode; ++i) {
  185.             ndcs = (NonDimensionalCostSystemic) ndces.evolve (
  186.                 ndcs,
  187.                 aMSS[i],
  188.                 dblDimensionlessRiskAversion,
  189.                 (iNumTimeNode - i) * dblTimeInterval,
  190.                 dblTimeInterval
  191.             );

  192.             double dblNonDimensionalTradeRate = dblNonDimensionalHoldings * ndcs.nonDimensionalTradeRate();

  193.             dblNonDimensionalHoldings = dblNonDimensionalHoldings - dblNonDimensionalTradeRate * dblTimeInterval;

  194.             System.out.println ("\t||" +
  195.                 FormatUtil.FormatDouble (dblTimeInterval * i, 1, 2, 1.) + " => " +
  196.                 FormatUtil.FormatDouble (aMSS[i].common(), 1, 4, 1.) + " | " +
  197.                 FormatUtil.FormatDouble (ndcs.realization(), 1, 4, 1.) + " | " +
  198.                 FormatUtil.FormatDouble (ndcs.gradient(), 1, 4, 1.) + " | " +
  199.                 FormatUtil.FormatDouble (ndcs.jacobian(), 1, 4, 1.) + " | " +
  200.                 FormatUtil.FormatDouble (dblNonDimensionalTradeRate, 1, 4, 1.) + " | " +
  201.                 FormatUtil.FormatDouble (dblNonDimensionalHoldings, 1, 4, 1.) + " ||"
  202.             );
  203.         }

  204.         System.out.println ("\t||-------------------------------------------------------------------||");

  205.         EnvManager.TerminateEnv();
  206.     }
  207. }