ADDiscriminatoryPowerAggregation6b.java

  1. package org.drip.sample.anfuso2017;

  2. import java.util.Map;

  3. import org.drip.analytics.support.CaseInsensitiveHashMap;
  4. import org.drip.analytics.support.Helper;
  5. import org.drip.measure.gaussian.R1UnivariateNormal;
  6. import org.drip.numerical.common.FormatUtil;
  7. import org.drip.service.env.EnvManager;
  8. import org.drip.validation.distance.GapLossWeightFunction;
  9. import org.drip.validation.distance.GapTestOutcome;
  10. import org.drip.validation.distance.GapTestSetting;
  11. import org.drip.validation.evidence.Ensemble;
  12. import org.drip.validation.evidence.Sample;
  13. import org.drip.validation.evidence.TestStatisticEvaluator;
  14. import org.drip.validation.hypothesis.ProbabilityIntegralTransform;
  15. import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzerAggregate;
  16. import org.drip.validation.riskfactorsingle.EventAggregationWeightFunction;
  17. import org.drip.validation.riskfactorsingle.GapTestOutcomeAggregate;
  18. import org.drip.validation.riskfactorsingle.HypothesisOutcomeAggregate;
  19. import org.drip.validation.riskfactorsingle.HypothesisOutcomeSuiteAggregate;
  20. import org.drip.validation.riskfactorsingle.HypothesisSuiteAggregate;

  21. /*
  22.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  23.  */

  24. /*!
  25.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  26.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  27.  *
  28.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  29.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  30.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  31.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  32.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  33.  *      and computational support.
  34.  *  
  35.  *      https://lakshmidrip.github.io/DROP/
  36.  *  
  37.  *  DROP is composed of three modules:
  38.  *  
  39.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  40.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  41.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  42.  *
  43.  *  DROP Product Core implements libraries for the following:
  44.  *  - Fixed Income Analytics
  45.  *  - Loan Analytics
  46.  *  - Transaction Cost Analytics
  47.  *
  48.  *  DROP Portfolio Core implements libraries for the following:
  49.  *  - Asset Allocation Analytics
  50.  *  - Asset Liability Management Analytics
  51.  *  - Capital Estimation Analytics
  52.  *  - Exposure Analytics
  53.  *  - Margin Analytics
  54.  *  - XVA Analytics
  55.  *
  56.  *  DROP Computational Core implements libraries for the following:
  57.  *  - Algorithm Support
  58.  *  - Computation Support
  59.  *  - Function Analysis
  60.  *  - Model Validation
  61.  *  - Numerical Analysis
  62.  *  - Numerical Optimizer
  63.  *  - Spline Builder
  64.  *  - Statistical Learning
  65.  *
  66.  *  Documentation for DROP is Spread Over:
  67.  *
  68.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  69.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  70.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  71.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  72.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  73.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  74.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  75.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  76.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  77.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  78.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  79.  *
  80.  *  Licensed under the Apache License, Version 2.0 (the "License");
  81.  *      you may not use this file except in compliance with the License.
  82.  *  
  83.  *  You may obtain a copy of the License at
  84.  *      http://www.apache.org/licenses/LICENSE-2.0
  85.  *  
  86.  *  Unless required by applicable law or agreed to in writing, software
  87.  *      distributed under the License is distributed on an "AS IS" BASIS,
  88.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  89.  *  
  90.  *  See the License for the specific language governing permissions and
  91.  *      limitations under the License.
  92.  */

  93. /**
  94.  * <i>ADDiscriminatoryPowerAggregation6a</i> demonstrates Multi-Horizon Discriminatory Power Aggregation
  95.  * illustrated in Table 6b of Anfuso, Karyampas, and Nawroth (2017).
  96.  *
  97.  *  <br><br>
  98.  *  <ul>
  99.  *      <li>
  100.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  101.  *              Back-testing Credit Exposure Models
  102.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  103.  *      </li>
  104.  *      <li>
  105.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  106.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  107.  *      </li>
  108.  *      <li>
  109.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  110.  *              Pricing, Palgrave Macmillan
  111.  *      </li>
  112.  *      <li>
  113.  *          Wikipedia (2018): Probability Integral Transform
  114.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  115.  *      </li>
  116.  *      <li>
  117.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  118.  *      </li>
  119.  *  </ul>
  120.  *
  121.  *  <br><br>
  122.  *  <ul>
  123.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  124.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  125.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  126.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  127.  *  </ul>
  128.  * <br><br>
  129.  *
  130.  * @author Lakshmi Krishnamurthy
  131.  */

  132. public class ADDiscriminatoryPowerAggregation6b
  133. {

  134.     private static final double UnivariateRandom (
  135.         final double mean,
  136.         final double volatility)
  137.         throws Exception
  138.     {
  139.         return new R1UnivariateNormal (
  140.             mean,
  141.             volatility
  142.         ).random();
  143.     }

  144.     private static final Sample GenerateSample (
  145.         final double annualMean,
  146.         final double annualVolatility,
  147.         final String horizonTenor,
  148.         final int drawCount)
  149.         throws Exception
  150.     {
  151.         double[] univariateRandomArray = new double[drawCount];

  152.         double horizonYF = Helper.TenorToYearFraction (horizonTenor);

  153.         double horizonYFSQRT = Math.sqrt (horizonYF);

  154.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  155.         {
  156.             univariateRandomArray[drawIndex] = UnivariateRandom (
  157.                 annualMean * horizonYF,
  158.                 annualVolatility * horizonYFSQRT
  159.             );
  160.         }

  161.         return new Sample (univariateRandomArray);
  162.     }

  163.     private static final Map<String, ProbabilityIntegralTransform> EventSamplePITMap (
  164.         final double annualMean,
  165.         final double annualVolatility,
  166.         final String[] horizonTenorArray,
  167.         final int drawCount)
  168.         throws Exception
  169.     {
  170.         Map<String, ProbabilityIntegralTransform> eventSamplePITMap = new
  171.             CaseInsensitiveHashMap<ProbabilityIntegralTransform>();

  172.         for (int horizonIndex = 0; horizonIndex < horizonTenorArray.length; ++horizonIndex)
  173.         {
  174.             eventSamplePITMap.put (
  175.                 horizonTenorArray[horizonIndex],
  176.                 GenerateSample (
  177.                     annualMean,
  178.                     annualVolatility,
  179.                     horizonTenorArray[horizonIndex],
  180.                     drawCount
  181.                 ).nativeProbabilityIntegralTransform()
  182.             );
  183.         }

  184.         return eventSamplePITMap;
  185.     }

  186.     private static final Sample[] GenerateSampleArray (
  187.         final double annualMean,
  188.         final double annualVolatility,
  189.         final String horizonTenor,
  190.         final int drawCount,
  191.         final int sampleCount)
  192.         throws Exception
  193.     {
  194.         Sample[] sampleArray = new Sample[sampleCount];

  195.         for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
  196.         {
  197.             sampleArray[sampleIndex] = GenerateSample (
  198.                 annualMean,
  199.                 annualVolatility,
  200.                 horizonTenor,
  201.                 drawCount
  202.             );
  203.         }

  204.         return sampleArray;
  205.     }

  206.     private static final Ensemble GenerateEnsemble (
  207.         final double hypothesisAnnualMean,
  208.         final double hypothesisAnnualVolatility,
  209.         final String horizonTenor,
  210.         final int drawCount,
  211.         final int sampleCount)
  212.         throws Exception
  213.     {
  214.         return new Ensemble (
  215.             GenerateSampleArray (
  216.                 hypothesisAnnualMean,
  217.                 hypothesisAnnualVolatility,
  218.                 horizonTenor,
  219.                 drawCount,
  220.                 sampleCount
  221.             ),
  222.             new TestStatisticEvaluator[]
  223.             {
  224.                 new TestStatisticEvaluator()
  225.                 {
  226.                     public double evaluate (
  227.                         final double[] drawArray)
  228.                         throws Exception
  229.                     {
  230.                         return 1.;
  231.                     }
  232.                 }
  233.             }
  234.         );
  235.     }

  236.     private static final HypothesisSuiteAggregate HypothesisEventMap (
  237.         final double[] hypothesisAnnualMeanArray,
  238.         final double[] hypothesisAnnualVolatilityArray,
  239.         final String[] horizonTenorArray,
  240.         final int drawCount,
  241.         final int sampleCount)
  242.         throws Exception
  243.     {
  244.         HypothesisSuiteAggregate hypothesisSuiteAggregate = new HypothesisSuiteAggregate();

  245.         for (double hypothesisAnnualMean : hypothesisAnnualMeanArray)
  246.         {
  247.             for (double hypothesisAnnualVolatility : hypothesisAnnualVolatilityArray)
  248.             {
  249.                 String hypothesisID = "HYPOTHESIS_" +
  250.                     FormatUtil.FormatDouble (hypothesisAnnualMean, 2, 4, 1.) + "_" +
  251.                     FormatUtil.FormatDouble (hypothesisAnnualVolatility, 2, 4, 1.);

  252.                 for (String horizonTenor : horizonTenorArray)
  253.                 {
  254.                     hypothesisSuiteAggregate.add (
  255.                         hypothesisID,
  256.                         horizonTenor,
  257.                         GenerateEnsemble (
  258.                             hypothesisAnnualMean,
  259.                             hypothesisAnnualVolatility,
  260.                             horizonTenor,
  261.                             drawCount,
  262.                             sampleCount
  263.                         )
  264.                     );
  265.                 }
  266.             }
  267.         }

  268.         return hypothesisSuiteAggregate;
  269.     }

  270.     public static final void main (
  271.         final String[] argumentArray)
  272.         throws Exception
  273.     {
  274.         EnvManager.InitEnv ("");

  275.         int drawCount = 390;
  276.         int sampleCount = 1000;
  277.         double sampleAnnualMean = 0.;
  278.         double sampleAnnualVolatility = 0.1;
  279.         String[] horizonTenorArray =
  280.         {
  281.             "3M",
  282.             "6M",
  283.             "1Y"
  284.         };
  285.         double[] hypothesisAnnualMeanArray = {
  286.             -0.050,
  287.             -0.025,
  288.              0.000,
  289.              0.025,
  290.              0.050
  291.         };
  292.         double[] hypothesisAnnualVolatilityArray = {
  293.             0.050,
  294.             0.075,
  295.             0.100,
  296.             0.125,
  297.             0.150
  298.         };

  299.         EventAggregationWeightFunction eventAggregationWeightFunction =
  300.             EventAggregationWeightFunction.AnfusoKaryampasNawroth();

  301.         Map<String, ProbabilityIntegralTransform> eventSamplePITMap = EventSamplePITMap (
  302.             sampleAnnualMean,
  303.             sampleAnnualVolatility,
  304.             horizonTenorArray,
  305.             drawCount
  306.         );

  307.         DiscriminatoryPowerAnalyzerAggregate discriminatoryPowerAnalyzerAggregate = new
  308.             DiscriminatoryPowerAnalyzerAggregate (
  309.                 eventSamplePITMap,
  310.                 GapTestSetting.RiskFactorLossTest (
  311.                     GapLossWeightFunction.AndersonDarling()
  312.                 ),
  313.                 eventAggregationWeightFunction
  314.             );

  315.         HypothesisSuiteAggregate hypothesisSuiteAggregate = HypothesisEventMap (
  316.             hypothesisAnnualMeanArray,
  317.             hypothesisAnnualVolatilityArray,
  318.             horizonTenorArray,
  319.             drawCount,
  320.             sampleCount
  321.         );

  322.         HypothesisOutcomeSuiteAggregate hypothesisOutcomeSuiteAggregate =
  323.             discriminatoryPowerAnalyzerAggregate.hypothesisGapTest (hypothesisSuiteAggregate);

  324.         Map<String, GapTestOutcomeAggregate> hypothesisOutcomeAggregateMap =
  325.             hypothesisOutcomeSuiteAggregate.hypothesisOutcomeAggregate();

  326.         HypothesisOutcomeAggregate leadingHypothesis = hypothesisOutcomeSuiteAggregate.leadingHypothesis();

  327.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  328.         System.out.println ("\t|                     Disciminatory Power Analysis Multi Horizon Distance Test                      ||");

  329.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  330.         System.out.println ("\t|    L -> R:                                                                                        ||");

  331.         System.out.println ("\t|                                                                                                   ||");

  332.         System.out.println ("\t|            - Hypothesis Key                                                                       ||");

  333.         System.out.println ("\t|            - Hypothesis Distance Metric                                                           ||");

  334.         System.out.println ("\t|            - Horizon Gap Outcomes [ Horizon1 = Distance1 | ... ]                                  ||");

  335.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  336.         for (Map.Entry<String, GapTestOutcomeAggregate> gapTestOutcomeAggregateEntry :
  337.             hypothesisOutcomeAggregateMap.entrySet())
  338.         {
  339.             GapTestOutcomeAggregate gapTestOutcomeAggregate = gapTestOutcomeAggregateEntry.getValue();

  340.             String gapTestOutcomeAggregateDisplay = "\t| " + gapTestOutcomeAggregateEntry.getKey() + " => " +
  341.                 FormatUtil.FormatDouble (gapTestOutcomeAggregate.distance(), 1, 6, 1.) + " | [";

  342.             for (Map.Entry<String, GapTestOutcome> gapTestOutcomeEntry :
  343.                 gapTestOutcomeAggregate.eventOutcomeMap().entrySet())
  344.             {
  345.                 gapTestOutcomeAggregateDisplay = gapTestOutcomeAggregateDisplay + " " +
  346.                     gapTestOutcomeEntry.getKey() + " = " +
  347.                     FormatUtil.FormatDouble (gapTestOutcomeEntry.getValue().distance(), 1, 6, 1.) + " |";
  348.             }

  349.             System.out.println (gapTestOutcomeAggregateDisplay + "] ||");
  350.         }

  351.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  352.         System.out.println();

  353.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  354.         System.out.println ("\t|            Leading Hypothesis Disciminatory Power Analysis Multi Horizon Distance Test            ||");

  355.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  356.         System.out.println ("\t|    L -> R:                                                                                        ||");

  357.         System.out.println ("\t|                                                                                                   ||");

  358.         System.out.println ("\t|            - Hypothesis Key                                                                       ||");

  359.         System.out.println ("\t|            - Hypothesis Distance Metric                                                           ||");

  360.         System.out.println ("\t|            - Horizon Gap Outcomes [ Horizon1 = Distance1 | ... ]                                  ||");

  361.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  362.         GapTestOutcomeAggregate gapTestOutcomeAggregate = leadingHypothesis.gapTestOutcomeAggregate();

  363.         String gapTestOutcomeAggregateDisplay = "\t| " + leadingHypothesis.hypothesisID() + " => " +
  364.             FormatUtil.FormatDouble (gapTestOutcomeAggregate.distance(), 1, 6, 1.) + " | [";

  365.         for (Map.Entry<String, GapTestOutcome> gapTestOutcomeEntry :
  366.             gapTestOutcomeAggregate.eventOutcomeMap().entrySet())
  367.         {
  368.             gapTestOutcomeAggregateDisplay = gapTestOutcomeAggregateDisplay + " " +
  369.                 gapTestOutcomeEntry.getKey() + " = " +
  370.                 FormatUtil.FormatDouble (gapTestOutcomeEntry.getValue().distance(), 1, 6, 1.) + " |";
  371.         }

  372.         System.out.println (gapTestOutcomeAggregateDisplay + "] ||");

  373.         System.out.println ("\t|---------------------------------------------------------------------------------------------------||");

  374.         EnvManager.TerminateEnv();
  375.     }
  376. }