CVMCorrelationDiscriminatoryPowerAnalysis9a.java

  1. package org.drip.sample.anfuso2017;

  2. import java.util.ArrayList;
  3. import java.util.List;

  4. import org.drip.numerical.common.FormatUtil;
  5. import org.drip.service.env.EnvManager;
  6. import org.drip.state.identifier.EntityEquityLabel;
  7. import org.drip.state.identifier.FXLabel;
  8. import org.drip.validation.distance.GapLossWeightFunction;
  9. import org.drip.validation.distance.GapTestOutcome;
  10. import org.drip.validation.distance.GapTestSetting;
  11. import org.drip.validation.evidence.Ensemble;
  12. import org.drip.validation.evidence.Sample;
  13. import org.drip.validation.evidence.TestStatisticEvaluator;
  14. import org.drip.validation.riskfactorjoint.NormalSampleCohort;
  15. import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzer;

  16. /*
  17.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  18.  */

  19. /*!
  20.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  21.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  22.  *
  23.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  24.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  25.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  26.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  27.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  28.  *      and computational support.
  29.  *  
  30.  *      https://lakshmidrip.github.io/DROP/
  31.  *  
  32.  *  DROP is composed of three modules:
  33.  *  
  34.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  35.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  36.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  37.  *
  38.  *  DROP Product Core implements libraries for the following:
  39.  *  - Fixed Income Analytics
  40.  *  - Loan Analytics
  41.  *  - Transaction Cost Analytics
  42.  *
  43.  *  DROP Portfolio Core implements libraries for the following:
  44.  *  - Asset Allocation Analytics
  45.  *  - Asset Liability Management Analytics
  46.  *  - Capital Estimation Analytics
  47.  *  - Exposure Analytics
  48.  *  - Margin Analytics
  49.  *  - XVA Analytics
  50.  *
  51.  *  DROP Computational Core implements libraries for the following:
  52.  *  - Algorithm Support
  53.  *  - Computation Support
  54.  *  - Function Analysis
  55.  *  - Model Validation
  56.  *  - Numerical Analysis
  57.  *  - Numerical Optimizer
  58.  *  - Spline Builder
  59.  *  - Statistical Learning
  60.  *
  61.  *  Documentation for DROP is Spread Over:
  62.  *
  63.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  64.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  65.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  66.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  67.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  68.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  69.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  70.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  71.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  72.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  73.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  74.  *
  75.  *  Licensed under the Apache License, Version 2.0 (the "License");
  76.  *      you may not use this file except in compliance with the License.
  77.  *  
  78.  *  You may obtain a copy of the License at
  79.  *      http://www.apache.org/licenses/LICENSE-2.0
  80.  *  
  81.  *  Unless required by applicable law or agreed to in writing, software
  82.  *      distributed under the License is distributed on an "AS IS" BASIS,
  83.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  84.  *  
  85.  *  See the License for the specific language governing permissions and
  86.  *      limitations under the License.
  87.  */

  88. /**
  89.  * <i>CVMCorrelationDiscriminatoryPowerAnalysis9a</i> demonstrates the Correlation Discriminatory Power
  90.  * Analysis on an Ensemble of Hypothesis as seen in Table 9a of Anfuso, Karyampas, and Nawroth (2017).
  91.  *
  92.  *  <br><br>
  93.  *  <ul>
  94.  *      <li>
  95.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  96.  *              Back-testing Credit Exposure Models
  97.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  98.  *      </li>
  99.  *      <li>
  100.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  101.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  102.  *      </li>
  103.  *      <li>
  104.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  105.  *              Pricing, Palgrave Macmillan
  106.  *      </li>
  107.  *      <li>
  108.  *          Wikipedia (2018): Probability Integral Transform
  109.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  110.  *      </li>
  111.  *      <li>
  112.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  113.  *      </li>
  114.  *  </ul>
  115.  *
  116.  *  <br><br>
  117.  *  <ul>
  118.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  119.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  120.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  121.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  122.  *  </ul>
  123.  * <br><br>
  124.  *
  125.  * @author Lakshmi Krishnamurthy
  126.  */

  127. public class CVMCorrelationDiscriminatoryPowerAnalysis9a
  128. {

  129.     private static final double[][] CorrelationMatrix (
  130.         final double correlation)
  131.     {
  132.         return new double[][]
  133.         {
  134.             {1.,          correlation},
  135.             {correlation, 1.         }
  136.         };
  137.     }

  138.     private static final Ensemble Hypothesis (
  139.         final List<String> labelList,
  140.         final double[] annualStateMeanArray,
  141.         final double[] annualStateVolatilityArray,
  142.         final double[][] correlationMatrix,
  143.         final int vertexCount,
  144.         final int sampleCount,
  145.         final double horizon,
  146.         final String label1,
  147.         final String label2)
  148.         throws Exception
  149.     {
  150.         Sample[] sampleArray = new Sample[sampleCount];

  151.         for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
  152.         {
  153.             sampleArray[sampleIndex] = NormalSampleCohort.Correlated (
  154.                 labelList,
  155.                 annualStateMeanArray,
  156.                 annualStateVolatilityArray,
  157.                 correlationMatrix,
  158.                 vertexCount,
  159.                 horizon
  160.             ).reduce (
  161.                 label1,
  162.                 label2
  163.             );
  164.         }

  165.         return new Ensemble (
  166.             sampleArray,
  167.             new TestStatisticEvaluator[]
  168.             {
  169.                 new TestStatisticEvaluator()
  170.                 {
  171.                     public double evaluate (
  172.                         final double[] drawArray)
  173.                         throws Exception
  174.                     {
  175.                         return 1.;
  176.                     }
  177.                 }
  178.             }
  179.         );
  180.     }

  181.     private static final double DistanceTest (
  182.         final GapTestOutcome gapTestOutcome)
  183.         throws Exception
  184.     {
  185.         return gapTestOutcome.distance();
  186.     }

  187.     public static final void main (
  188.         final String[] argumentArray)
  189.         throws Exception
  190.     {
  191.         EnvManager.InitEnv ("");

  192.         int sampleCount = 26;
  193.         int vertexCount = 780;
  194.         String currency = "USD";
  195.         double horizon = 1. / 12.;
  196.         double sampleCorrelation = 0.50;
  197.         String equityEntity = "SNP500";
  198.         String fxCurrencyPair = "CHF/USD";
  199.         double[] annualStateMeanArray =
  200.         {
  201.             0.06,
  202.             0.01
  203.         };
  204.         double[] annualStateVolatilityArray =
  205.         {
  206.             0.1,
  207.             0.1
  208.         };
  209.         double[] hypothesisCorrelationArray =
  210.         {
  211.             -0.99,
  212.             -0.50,
  213.              0.00,
  214.              0.50,
  215.              0.99
  216.         };

  217.         List<String> labelList = new ArrayList<String>();

  218.         String snp500Label = EntityEquityLabel.Standard (
  219.             equityEntity,
  220.             currency
  221.         ).fullyQualifiedName();

  222.         String chfusdLabel = FXLabel.Standard (fxCurrencyPair).fullyQualifiedName();

  223.         labelList.add (snp500Label);

  224.         labelList.add (chfusdLabel);

  225.         Sample sample = NormalSampleCohort.Correlated (
  226.             labelList,
  227.             annualStateMeanArray,
  228.             annualStateVolatilityArray,
  229.             CorrelationMatrix (sampleCorrelation),
  230.             vertexCount,
  231.             horizon
  232.         ).reduce (
  233.             snp500Label,
  234.             chfusdLabel
  235.         );

  236.         DiscriminatoryPowerAnalyzer discriminatoryPowerAnalysis = DiscriminatoryPowerAnalyzer.FromSample (
  237.             sample,
  238.             GapTestSetting.RiskFactorLossTest (GapLossWeightFunction.CramersVonMises())
  239.         );

  240.         System.out.println ("\t|-----------------------||");

  241.         System.out.println ("\t|   CORRELATION SCAN    ||");

  242.         System.out.println ("\t|-----------------------||");

  243.         System.out.println ("\t|    L -> R:            ||");

  244.         System.out.println ("\t|        - Correlation  ||");

  245.         System.out.println ("\t|        - Distance     ||");

  246.         System.out.println ("\t|-----------------------||");

  247.         for (double hypothesisCorrelation : hypothesisCorrelationArray)
  248.         {
  249.             Ensemble hypothesis = Hypothesis (
  250.                 labelList,
  251.                 annualStateMeanArray,
  252.                 annualStateVolatilityArray,
  253.                 CorrelationMatrix (hypothesisCorrelation),
  254.                 vertexCount,
  255.                 sampleCount,
  256.                 horizon,
  257.                 snp500Label,
  258.                 chfusdLabel
  259.             );

  260.             GapTestOutcome gapTestOutcome = discriminatoryPowerAnalysis.gapTest (hypothesis);

  261.             System.out.println (
  262.                 "\t| " +
  263.                 FormatUtil.FormatDouble (hypothesisCorrelation, 1, 3, 1.) + " => " +
  264.                 FormatUtil.FormatDouble (DistanceTest (gapTestOutcome), 1, 8, 1.) + " ||"
  265.             );
  266.         }

  267.         System.out.println ("\t|-----------------------||");

  268.         EnvManager.TerminateEnv();
  269.     }
  270. }