CVMDiscriminatoryPowerAggregation6a.java
package org.drip.sample.anfuso2017;
import java.util.Map;
import org.drip.analytics.support.CaseInsensitiveHashMap;
import org.drip.analytics.support.Helper;
import org.drip.measure.gaussian.R1UnivariateNormal;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
import org.drip.validation.distance.GapLossWeightFunction;
import org.drip.validation.distance.GapTestOutcome;
import org.drip.validation.distance.GapTestSetting;
import org.drip.validation.evidence.Ensemble;
import org.drip.validation.evidence.Sample;
import org.drip.validation.evidence.TestStatisticEvaluator;
import org.drip.validation.hypothesis.ProbabilityIntegralTransform;
import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzerAggregate;
import org.drip.validation.riskfactorsingle.EventAggregationWeightFunction;
import org.drip.validation.riskfactorsingle.GapTestOutcomeAggregate;
import org.drip.validation.riskfactorsingle.HypothesisOutcomeAggregate;
import org.drip.validation.riskfactorsingle.HypothesisOutcomeSuiteAggregate;
import org.drip.validation.riskfactorsingle.HypothesisSuiteAggregate;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>CVMDiscriminatoryPowerAggregation6a</i> demonstrates Multi-Horizon Discriminatory Power Aggregation
* illustrated in Table 6a of Anfuso, Karyampas, and Nawroth (2013).
*
* <br><br>
* <ul>
* <li>
* Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
* Back-testing Credit Exposure Models
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
* </li>
* <li>
* Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
* Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
* </li>
* <li>
* Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
* Pricing, Palgrave Macmillan
* </li>
* <li>
* Wikipedia (2018): Probability Integral Transform
* https://en.wikipedia.org/wiki/Probability_integral_transform
* </li>
* <li>
* Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class CVMDiscriminatoryPowerAggregation6a
{
private static final double UnivariateRandom (
final double mean,
final double volatility)
throws Exception
{
return new R1UnivariateNormal (
mean,
volatility
).random();
}
private static final Sample GenerateSample (
final double annualMean,
final double annualVolatility,
final String horizonTenor,
final int drawCount)
throws Exception
{
double[] univariateRandomArray = new double[drawCount];
double horizonYF = Helper.TenorToYearFraction (horizonTenor);
double horizonYFSQRT = Math.sqrt (horizonYF);
for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
{
univariateRandomArray[drawIndex] = UnivariateRandom (
annualMean * horizonYF,
annualVolatility * horizonYFSQRT
);
}
return new Sample (univariateRandomArray);
}
private static final Map<String, ProbabilityIntegralTransform> EventSamplePITMap (
final double annualMean,
final double annualVolatility,
final String[] horizonTenorArray,
final int drawCount)
throws Exception
{
Map<String, ProbabilityIntegralTransform> eventSamplePITMap = new
CaseInsensitiveHashMap<ProbabilityIntegralTransform>();
for (int horizonIndex = 0; horizonIndex < horizonTenorArray.length; ++horizonIndex)
{
eventSamplePITMap.put (
horizonTenorArray[horizonIndex],
GenerateSample (
annualMean,
annualVolatility,
horizonTenorArray[horizonIndex],
drawCount
).nativeProbabilityIntegralTransform()
);
}
return eventSamplePITMap;
}
private static final Sample[] GenerateSampleArray (
final double annualMean,
final double annualVolatility,
final String horizonTenor,
final int drawCount,
final int sampleCount)
throws Exception
{
Sample[] sampleArray = new Sample[sampleCount];
for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
{
sampleArray[sampleIndex] = GenerateSample (
annualMean,
annualVolatility,
horizonTenor,
drawCount
);
}
return sampleArray;
}
private static final Ensemble GenerateEnsemble (
final double hypothesisAnnualMean,
final double hypothesisAnnualVolatility,
final String horizonTenor,
final int drawCount,
final int sampleCount)
throws Exception
{
return new Ensemble (
GenerateSampleArray (
hypothesisAnnualMean,
hypothesisAnnualVolatility,
horizonTenor,
drawCount,
sampleCount
),
new TestStatisticEvaluator[]
{
new TestStatisticEvaluator()
{
public double evaluate (
final double[] drawArray)
throws Exception
{
return 1.;
}
}
}
);
}
private static final HypothesisSuiteAggregate HypothesisEventMap (
final double[] hypothesisAnnualMeanArray,
final double[] hypothesisAnnualVolatilityArray,
final String[] horizonTenorArray,
final int drawCount,
final int sampleCount)
throws Exception
{
HypothesisSuiteAggregate hypothesisSuiteAggregate = new HypothesisSuiteAggregate();
for (double hypothesisAnnualMean : hypothesisAnnualMeanArray)
{
for (double hypothesisAnnualVolatility : hypothesisAnnualVolatilityArray)
{
String hypothesisID = "HYPOTHESIS_" +
FormatUtil.FormatDouble (hypothesisAnnualMean, 2, 4, 1.) + "_" +
FormatUtil.FormatDouble (hypothesisAnnualVolatility, 2, 4, 1.);
for (String horizonTenor : horizonTenorArray)
{
hypothesisSuiteAggregate.add (
hypothesisID,
horizonTenor,
GenerateEnsemble (
hypothesisAnnualMean,
hypothesisAnnualVolatility,
horizonTenor,
drawCount,
sampleCount
)
);
}
}
}
return hypothesisSuiteAggregate;
}
public static final void main (
final String[] argumentArray)
throws Exception
{
EnvManager.InitEnv ("");
int drawCount = 390;
int sampleCount = 1000;
double sampleAnnualMean = 0.;
double sampleAnnualVolatility = 0.1;
String[] horizonTenorArray =
{
"3M",
"6M",
"1Y"
};
double[] hypothesisAnnualMeanArray = {
-0.050,
-0.025,
0.000,
0.025,
0.050
};
double[] hypothesisAnnualVolatilityArray = {
0.050,
0.075,
0.100,
0.125,
0.150
};
EventAggregationWeightFunction eventAggregationWeightFunction =
EventAggregationWeightFunction.AnfusoKaryampasNawroth();
Map<String, ProbabilityIntegralTransform> eventSamplePITMap = EventSamplePITMap (
sampleAnnualMean,
sampleAnnualVolatility,
horizonTenorArray,
drawCount
);
DiscriminatoryPowerAnalyzerAggregate discriminatoryPowerAnalyzerAggregate = new
DiscriminatoryPowerAnalyzerAggregate (
eventSamplePITMap,
GapTestSetting.RiskFactorLossTest (
GapLossWeightFunction.AndersonDarling()
),
eventAggregationWeightFunction
);
HypothesisSuiteAggregate hypothesisSuiteAggregate = HypothesisEventMap (
hypothesisAnnualMeanArray,
hypothesisAnnualVolatilityArray,
horizonTenorArray,
drawCount,
sampleCount
);
HypothesisOutcomeSuiteAggregate hypothesisOutcomeSuiteAggregate =
discriminatoryPowerAnalyzerAggregate.hypothesisGapTest (hypothesisSuiteAggregate);
Map<String, GapTestOutcomeAggregate> hypothesisOutcomeAggregateMap =
hypothesisOutcomeSuiteAggregate.hypothesisOutcomeAggregate();
HypothesisOutcomeAggregate leadingHypothesis = hypothesisOutcomeSuiteAggregate.leadingHypothesis();
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println ("\t| Disciminatory Power Analysis Multi Horizon Distance Test ||");
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println ("\t| L -> R: ||");
System.out.println ("\t| ||");
System.out.println ("\t| - Hypothesis Key ||");
System.out.println ("\t| - Hypothesis Distance Metric ||");
System.out.println ("\t| - Horizon Gap Outcomes [ Horizon1 = Distance1 | ... ] ||");
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
for (Map.Entry<String, GapTestOutcomeAggregate> gapTestOutcomeAggregateEntry :
hypothesisOutcomeAggregateMap.entrySet())
{
GapTestOutcomeAggregate gapTestOutcomeAggregate = gapTestOutcomeAggregateEntry.getValue();
String gapTestOutcomeAggregateDisplay = "\t| " + gapTestOutcomeAggregateEntry.getKey() + " => " +
FormatUtil.FormatDouble (gapTestOutcomeAggregate.distance(), 1, 6, 1.) + " | [";
for (Map.Entry<String, GapTestOutcome> gapTestOutcomeEntry :
gapTestOutcomeAggregate.eventOutcomeMap().entrySet())
{
gapTestOutcomeAggregateDisplay = gapTestOutcomeAggregateDisplay + " " +
gapTestOutcomeEntry.getKey() + " = " +
FormatUtil.FormatDouble (gapTestOutcomeEntry.getValue().distance(), 1, 6, 1.) + " |";
}
System.out.println (gapTestOutcomeAggregateDisplay + "] ||");
}
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println();
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println ("\t| Leading Hypothesis Disciminatory Power Analysis Multi Horizon Distance Test ||");
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println ("\t| L -> R: ||");
System.out.println ("\t| ||");
System.out.println ("\t| - Hypothesis Key ||");
System.out.println ("\t| - Hypothesis Distance Metric ||");
System.out.println ("\t| - Horizon Gap Outcomes [ Horizon1 = Distance1 | ... ] ||");
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
GapTestOutcomeAggregate gapTestOutcomeAggregate = leadingHypothesis.gapTestOutcomeAggregate();
String gapTestOutcomeAggregateDisplay = "\t| " + leadingHypothesis.hypothesisID() + " => " +
FormatUtil.FormatDouble (gapTestOutcomeAggregate.distance(), 1, 6, 1.) + " | [";
for (Map.Entry<String, GapTestOutcome> gapTestOutcomeEntry :
gapTestOutcomeAggregate.eventOutcomeMap().entrySet())
{
gapTestOutcomeAggregateDisplay = gapTestOutcomeAggregateDisplay + " " +
gapTestOutcomeEntry.getKey() + " = " +
FormatUtil.FormatDouble (gapTestOutcomeEntry.getValue().distance(), 1, 6, 1.) + " |";
}
System.out.println (gapTestOutcomeAggregateDisplay + "] ||");
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
EnvManager.TerminateEnv();
}
}