CVMDiscriminatoryPowerAnalysis3a.java

  1. package org.drip.sample.anfuso2017;

  2. import org.drip.measure.gaussian.R1UnivariateNormal;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.validation.distance.GapLossWeightFunction;
  6. import org.drip.validation.distance.GapTestOutcome;
  7. import org.drip.validation.distance.GapTestSetting;
  8. import org.drip.validation.evidence.Ensemble;
  9. import org.drip.validation.evidence.Sample;
  10. import org.drip.validation.evidence.TestStatisticEvaluator;
  11. import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzer;

  12. /*
  13.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  14.  */

  15. /*!
  16.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  17.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  18.  *
  19.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  20.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  21.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  22.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  23.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  24.  *      and computational support.
  25.  *  
  26.  *      https://lakshmidrip.github.io/DROP/
  27.  *  
  28.  *  DROP is composed of three modules:
  29.  *  
  30.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  31.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  32.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  33.  *
  34.  *  DROP Product Core implements libraries for the following:
  35.  *  - Fixed Income Analytics
  36.  *  - Loan Analytics
  37.  *  - Transaction Cost Analytics
  38.  *
  39.  *  DROP Portfolio Core implements libraries for the following:
  40.  *  - Asset Allocation Analytics
  41.  *  - Asset Liability Management Analytics
  42.  *  - Capital Estimation Analytics
  43.  *  - Exposure Analytics
  44.  *  - Margin Analytics
  45.  *  - XVA Analytics
  46.  *
  47.  *  DROP Computational Core implements libraries for the following:
  48.  *  - Algorithm Support
  49.  *  - Computation Support
  50.  *  - Function Analysis
  51.  *  - Model Validation
  52.  *  - Numerical Analysis
  53.  *  - Numerical Optimizer
  54.  *  - Spline Builder
  55.  *  - Statistical Learning
  56.  *
  57.  *  Documentation for DROP is Spread Over:
  58.  *
  59.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  60.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  61.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  62.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  63.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  64.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  65.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  66.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  67.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  68.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  69.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  70.  *
  71.  *  Licensed under the Apache License, Version 2.0 (the "License");
  72.  *      you may not use this file except in compliance with the License.
  73.  *  
  74.  *  You may obtain a copy of the License at
  75.  *      http://www.apache.org/licenses/LICENSE-2.0
  76.  *  
  77.  *  Unless required by applicable law or agreed to in writing, software
  78.  *      distributed under the License is distributed on an "AS IS" BASIS,
  79.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  80.  *  
  81.  *  See the License for the specific language governing permissions and
  82.  *      limitations under the License.
  83.  */

  84. /**
  85.  * <i>CVMDiscriminatoryPowerAnalysis3a</i> demonstrates the Discriminatory Power Analysis illustrated in
  86.  * Table 3a of Anfuso, Karyampas, and Nawroth (2013).
  87.  *
  88.  *  <br><br>
  89.  *  <ul>
  90.  *      <li>
  91.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  92.  *              Back-testing Credit Exposure Models
  93.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  94.  *      </li>
  95.  *      <li>
  96.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  97.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  98.  *      </li>
  99.  *      <li>
  100.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  101.  *              Pricing, Palgrave Macmillan
  102.  *      </li>
  103.  *      <li>
  104.  *          Wikipedia (2018): Probability Integral Transform
  105.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  106.  *      </li>
  107.  *      <li>
  108.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  109.  *      </li>
  110.  *  </ul>
  111.  *
  112.  *  <br><br>
  113.  *  <ul>
  114.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  115.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  116.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  117.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  118.  *  </ul>
  119.  * <br><br>
  120.  *
  121.  * @author Lakshmi Krishnamurthy
  122.  */

  123. public class CVMDiscriminatoryPowerAnalysis3a
  124. {

  125.     private static final double UnivariateRandom (
  126.         final double mean,
  127.         final double sigma)
  128.         throws Exception
  129.     {
  130.         return new R1UnivariateNormal (
  131.             mean,
  132.             sigma
  133.         ).random();
  134.     }

  135.     private static final Sample GenerateSample (
  136.         final double mean,
  137.         final double sigma,
  138.         final int drawCount)
  139.         throws Exception
  140.     {
  141.         double[] univariateRandomArray = new double[drawCount];

  142.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  143.         {
  144.             univariateRandomArray[drawIndex] = UnivariateRandom (
  145.                 mean,
  146.                 sigma
  147.             );
  148.         }

  149.         return new Sample (univariateRandomArray);
  150.     }

  151.     private static final Sample[] GenerateSampleArray (
  152.         final double mean,
  153.         final double sigma,
  154.         final int drawCount,
  155.         final int sampleCount)
  156.         throws Exception
  157.     {
  158.         Sample[] sampleArray = new Sample[sampleCount];

  159.         for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
  160.         {
  161.             sampleArray[sampleIndex] = GenerateSample (
  162.                 mean,
  163.                 sigma,
  164.                 drawCount
  165.             );
  166.         }

  167.         return sampleArray;
  168.     }

  169.     private static final Ensemble GenerateEnsemble (
  170.         final double mean,
  171.         final double sigma,
  172.         final int drawCount,
  173.         final int sampleCount)
  174.         throws Exception
  175.     {
  176.         return new Ensemble (
  177.             GenerateSampleArray (
  178.                 mean,
  179.                 sigma,
  180.                 drawCount,
  181.                 sampleCount
  182.             ),
  183.             new TestStatisticEvaluator[]
  184.             {
  185.                 new TestStatisticEvaluator()
  186.                 {
  187.                     public double evaluate (
  188.                         final double[] drawArray)
  189.                         throws Exception
  190.                     {
  191.                         return 1.;
  192.                     }
  193.                 }
  194.             }
  195.         );
  196.     }

  197.     private static final double DistanceTest (
  198.         final GapTestOutcome gapTestOutcome)
  199.         throws Exception
  200.     {
  201.         return gapTestOutcome.distance();
  202.     }

  203.     public static final void main (
  204.         final String[] argumentArray)
  205.         throws Exception
  206.     {
  207.         EnvManager.InitEnv ("");

  208.         int drawCount = 3780;
  209.         int sampleCount = 100;
  210.         double horizon = 1. / 12;
  211.         double sampleAnnualMean = 0.;
  212.         double sampleAnnualVolatility = 0.1;
  213.         double[] hypothesisAnnualMeanArray = {
  214.             -0.050,
  215.             -0.025,
  216.              0.000,
  217.              0.025,
  218.              0.050
  219.         };
  220.         double[] hypothesisAnnualVolatilityArray = {
  221.             0.050,
  222.             0.075,
  223.             0.100,
  224.             0.125,
  225.             0.150
  226.         };

  227.         double hypothesisHorizonSQRT = Math.sqrt (horizon);

  228.         Sample sample = GenerateSample (
  229.             sampleAnnualMean,
  230.             sampleAnnualVolatility * hypothesisHorizonSQRT,
  231.             drawCount
  232.         );

  233.         DiscriminatoryPowerAnalyzer discriminatoryPowerAnalysis = DiscriminatoryPowerAnalyzer.FromSample (
  234.             sample,
  235.             GapTestSetting.RiskFactorLossTest (
  236.                 GapLossWeightFunction.AndersonDarling()
  237.             )
  238.         );

  239.         System.out.println ("\t|--------------------------------||");

  240.         System.out.println ("\t|     DISCRIMINANT GRID SCAN     ||");

  241.         System.out.println ("\t|--------------------------------||");

  242.         System.out.println ("\t|    L -> R:                     ||");

  243.         System.out.println ("\t|        - Hypothesis Mean       ||");

  244.         System.out.println ("\t|        - Hypothesis Sigma      ||");

  245.         System.out.println ("\t|        - Distance Metric       ||");

  246.         System.out.println ("\t|--------------------------------||");

  247.         for (double hypothesisAnnualMean : hypothesisAnnualMeanArray)
  248.         {
  249.             for (double hypothesisAnnualVolatility : hypothesisAnnualVolatilityArray)
  250.             {
  251.                 Ensemble hypothesis = GenerateEnsemble (
  252.                     hypothesisAnnualMean * horizon,
  253.                     hypothesisAnnualVolatility * hypothesisHorizonSQRT,
  254.                     drawCount,
  255.                     sampleCount
  256.                 );

  257.                 GapTestOutcome gapTestOutcome = discriminatoryPowerAnalysis.gapTest (hypothesis);

  258.                 System.out.println (
  259.                     "\t| " +
  260.                     FormatUtil.FormatDouble (hypothesisAnnualMean, 1, 3, 1.) + " | " +
  261.                     FormatUtil.FormatDouble (hypothesisAnnualVolatility, 1, 3, 1.) + " => " +
  262.                     FormatUtil.FormatDouble (DistanceTest (gapTestOutcome), 1, 8, 1.) + " ||"
  263.                 );
  264.             }
  265.         }

  266.         System.out.println ("\t|------------------------------||");

  267.         EnvManager.TerminateEnv();
  268.     }
  269. }