ExpectedPositiveExposure12.java

  1. package org.drip.sample.anfuso2017;

  2. import org.drip.measure.gaussian.R1UnivariateNormal;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;

  5. /*
  6.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  7.  */

  8. /*!
  9.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  13.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  14.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  15.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  16.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  17.  *      and computational support.
  18.  *  
  19.  *      https://lakshmidrip.github.io/DROP/
  20.  *  
  21.  *  DROP is composed of three modules:
  22.  *  
  23.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  24.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  25.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  26.  *
  27.  *  DROP Product Core implements libraries for the following:
  28.  *  - Fixed Income Analytics
  29.  *  - Loan Analytics
  30.  *  - Transaction Cost Analytics
  31.  *
  32.  *  DROP Portfolio Core implements libraries for the following:
  33.  *  - Asset Allocation Analytics
  34.  *  - Asset Liability Management Analytics
  35.  *  - Capital Estimation Analytics
  36.  *  - Exposure Analytics
  37.  *  - Margin Analytics
  38.  *  - XVA Analytics
  39.  *
  40.  *  DROP Computational Core implements libraries for the following:
  41.  *  - Algorithm Support
  42.  *  - Computation Support
  43.  *  - Function Analysis
  44.  *  - Model Validation
  45.  *  - Numerical Analysis
  46.  *  - Numerical Optimizer
  47.  *  - Spline Builder
  48.  *  - Statistical Learning
  49.  *
  50.  *  Documentation for DROP is Spread Over:
  51.  *
  52.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  53.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  54.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  55.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  56.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  57.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  58.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  59.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  60.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  61.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  62.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  63.  *
  64.  *  Licensed under the Apache License, Version 2.0 (the "License");
  65.  *      you may not use this file except in compliance with the License.
  66.  *  
  67.  *  You may obtain a copy of the License at
  68.  *      http://www.apache.org/licenses/LICENSE-2.0
  69.  *  
  70.  *  Unless required by applicable law or agreed to in writing, software
  71.  *      distributed under the License is distributed on an "AS IS" BASIS,
  72.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  73.  *  
  74.  *  See the License for the specific language governing permissions and
  75.  *      limitations under the License.
  76.  */

  77. /**
  78.  * <i>ExpectedPositiveExposure12</i> computes the Expected Positive Exposure as a Function of the MTM
  79.  * Volatility as laid out in Table 12 of Anfuso, Karyampas, and Nawroth (2017).
  80.  *
  81.  *  <br><br>
  82.  *  <ul>
  83.  *      <li>
  84.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  85.  *              Back-testing Credit Exposure Models
  86.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  87.  *      </li>
  88.  *      <li>
  89.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  90.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  91.  *      </li>
  92.  *      <li>
  93.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  94.  *              Pricing, Palgrave Macmillan
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2018): Probability Integral Transform
  98.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  99.  *      </li>
  100.  *      <li>
  101.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  102.  *      </li>
  103.  *  </ul>
  104.  *
  105.  *  <br><br>
  106.  *  <ul>
  107.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  108.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  109.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  110.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  111.  *  </ul>
  112.  * <br><br>
  113.  *
  114.  * @author Lakshmi Krishnamurthy
  115.  */

  116. public class ExpectedPositiveExposure12
  117. {

  118.     private static final double ExpectedPositiveRealization (
  119.         final double mean,
  120.         final double sigma,
  121.         final int drawCount)
  122.         throws Exception
  123.     {
  124.         double expectedPositiveRealization = 0.;

  125.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  126.         {
  127.             double realization = new R1UnivariateNormal (
  128.                 mean,
  129.                 sigma
  130.             ).random();

  131.             expectedPositiveRealization = expectedPositiveRealization +
  132.                 (realization > 0. ? realization : 0.);
  133.         }

  134.         return expectedPositiveRealization / drawCount;
  135.     }

  136.     private static final void ExpectedPositiveRealization (
  137.         final double mean,
  138.         final double[] sigmaArray,
  139.         final int drawCount)
  140.         throws Exception
  141.     {
  142.         for (double sigma : sigmaArray)
  143.         {
  144.             System.out.println (
  145.                 "\t| " +
  146.                 FormatUtil.FormatDouble (mean, 1, 1, 1.) + " | " +
  147.                 FormatUtil.FormatDouble (sigma, 1, 2, 1.) + " | " +
  148.                 FormatUtil.FormatDouble (
  149.                     ExpectedPositiveRealization (
  150.                         mean,
  151.                         sigma,
  152.                         drawCount
  153.                     ), 1, 4, 1.
  154.                 ) + " ||"
  155.             );
  156.         }

  157.         System.out.println ("\t|------------------------||");
  158.     }

  159.     public static final void main (
  160.         final String[] argumentArray)
  161.         throws Exception
  162.     {
  163.         EnvManager.InitEnv ("");

  164.         int drawCount = 100000;
  165.         double[] meanArray =
  166.         {
  167.             -5.0,
  168.              0.0,
  169.              5.0
  170.         };
  171.         double[] sigmaArray = {
  172.             1.0,
  173.             2.0,
  174.             3.0,
  175.             4.0,
  176.             5.0
  177.         };

  178.         System.out.println ("\t|------------------------||");

  179.         System.out.println ("\t|  EPE for Model Params  ||");

  180.         System.out.println ("\t|------------------------||");

  181.         System.out.println ("\t|    L -> R:             ||");

  182.         System.out.println ("\t|        - Mean          ||");

  183.         System.out.println ("\t|        - Volatility    ||");

  184.         System.out.println ("\t|        - EPE           ||");

  185.         System.out.println ("\t|------------------------||");

  186.         for (double mean : meanArray)
  187.         {
  188.             ExpectedPositiveRealization (
  189.                 mean,
  190.                 sigmaArray,
  191.                 drawCount
  192.             );
  193.         }

  194.         EnvManager.TerminateEnv();
  195.     }
  196. }