MTMVolatilityComparison11b.java

  1. package org.drip.sample.anfuso2017;

  2. import org.drip.measure.gaussian.R1UnivariateNormal;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.validation.distance.GapLossWeightFunction;
  6. import org.drip.validation.distance.GapTestOutcome;
  7. import org.drip.validation.distance.GapTestSetting;
  8. import org.drip.validation.evidence.Ensemble;
  9. import org.drip.validation.evidence.Sample;
  10. import org.drip.validation.evidence.TestStatisticEvaluator;
  11. import org.drip.validation.hypothesis.HistogramTestOutcome;
  12. import org.drip.validation.hypothesis.HistogramTestSetting;
  13. import org.drip.validation.hypothesis.ProbabilityIntegralTransformTest;
  14. import org.drip.validation.quantile.PlottingPositionGeneratorHeuristic;
  15. import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzer;

  16. /*
  17.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  18.  */

  19. /*!
  20.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  21.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  22.  *
  23.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  24.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  25.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  26.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  27.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  28.  *      and computational support.
  29.  *  
  30.  *      https://lakshmidrip.github.io/DROP/
  31.  *  
  32.  *  DROP is composed of three modules:
  33.  *  
  34.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  35.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  36.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  37.  *
  38.  *  DROP Product Core implements libraries for the following:
  39.  *  - Fixed Income Analytics
  40.  *  - Loan Analytics
  41.  *  - Transaction Cost Analytics
  42.  *
  43.  *  DROP Portfolio Core implements libraries for the following:
  44.  *  - Asset Allocation Analytics
  45.  *  - Asset Liability Management Analytics
  46.  *  - Capital Estimation Analytics
  47.  *  - Exposure Analytics
  48.  *  - Margin Analytics
  49.  *  - XVA Analytics
  50.  *
  51.  *  DROP Computational Core implements libraries for the following:
  52.  *  - Algorithm Support
  53.  *  - Computation Support
  54.  *  - Function Analysis
  55.  *  - Model Validation
  56.  *  - Numerical Analysis
  57.  *  - Numerical Optimizer
  58.  *  - Spline Builder
  59.  *  - Statistical Learning
  60.  *
  61.  *  Documentation for DROP is Spread Over:
  62.  *
  63.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  64.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  65.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  66.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  67.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  68.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  69.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  70.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  71.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  72.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  73.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  74.  *
  75.  *  Licensed under the Apache License, Version 2.0 (the "License");
  76.  *      you may not use this file except in compliance with the License.
  77.  *  
  78.  *  You may obtain a copy of the License at
  79.  *      http://www.apache.org/licenses/LICENSE-2.0
  80.  *  
  81.  *  Unless required by applicable law or agreed to in writing, software
  82.  *      distributed under the License is distributed on an "AS IS" BASIS,
  83.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  84.  *  
  85.  *  See the License for the specific language governing permissions and
  86.  *      limitations under the License.
  87.  */

  88. /**
  89.  * <i>MTMVolatilityComparison11b</i> illustrates the Impact on Gap Distribution of Hypothesis Parameters as
  90.  * laid out in Table 11b of Anfuso, Karyampas, and Nawroth (2017).
  91.  *
  92.  *  <br><br>
  93.  *  <ul>
  94.  *      <li>
  95.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  96.  *              Back-testing Credit Exposure Models
  97.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  98.  *      </li>
  99.  *      <li>
  100.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  101.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  102.  *      </li>
  103.  *      <li>
  104.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  105.  *              Pricing, Palgrave Macmillan
  106.  *      </li>
  107.  *      <li>
  108.  *          Wikipedia (2018): Probability Integral Transform
  109.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  110.  *      </li>
  111.  *      <li>
  112.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  113.  *      </li>
  114.  *  </ul>
  115.  *
  116.  *  <br><br>
  117.  *  <ul>
  118.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  119.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  120.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  121.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  122.  *  </ul>
  123.  * <br><br>
  124.  *
  125.  * @author Lakshmi Krishnamurthy
  126.  */

  127. public class MTMVolatilityComparison11b
  128. {

  129.     private static final double UnivariateRandom (
  130.         final double mean,
  131.         final double sigma)
  132.         throws Exception
  133.     {
  134.         return new R1UnivariateNormal (
  135.             mean,
  136.             sigma
  137.         ).random();
  138.     }

  139.     private static final Sample GenerateSample (
  140.         final double mean,
  141.         final double sigma,
  142.         final int drawCount)
  143.         throws Exception
  144.     {
  145.         double[] univariateRandomArray = new double[drawCount];

  146.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  147.         {
  148.             univariateRandomArray[drawIndex] = UnivariateRandom (
  149.                 mean,
  150.                 sigma
  151.             );
  152.         }

  153.         return new Sample (univariateRandomArray);
  154.     }

  155.     private static final Sample[] GenerateSampleArray (
  156.         final double mean,
  157.         final double sigma,
  158.         final int drawCount,
  159.         final int sampleCount)
  160.         throws Exception
  161.     {
  162.         Sample[] sampleArray = new Sample[sampleCount];

  163.         for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
  164.         {
  165.             sampleArray[sampleIndex] = GenerateSample (
  166.                 mean,
  167.                 sigma,
  168.                 drawCount
  169.             );
  170.         }

  171.         return sampleArray;
  172.     }

  173.     private static final Ensemble GenerateEnsemble (
  174.         final double mean,
  175.         final double sigma,
  176.         final int drawCount,
  177.         final int sampleCount)
  178.         throws Exception
  179.     {
  180.         return new Ensemble (
  181.             GenerateSampleArray (
  182.                 mean,
  183.                 sigma,
  184.                 drawCount,
  185.                 sampleCount
  186.             ),
  187.             new TestStatisticEvaluator[]
  188.             {
  189.                 new TestStatisticEvaluator()
  190.                 {
  191.                     public double evaluate (
  192.                         final double[] drawArray)
  193.                         throws Exception
  194.                     {
  195.                         return 1.;
  196.                     }
  197.                 }
  198.             }
  199.         );
  200.     }

  201.     private static final void DistanceTest (
  202.         final GapTestOutcome gapTestOutcome,
  203.         final int orderStatisticsCount)
  204.         throws Exception
  205.     {
  206.         HistogramTestOutcome histogram = new ProbabilityIntegralTransformTest (
  207.             gapTestOutcome.probabilityIntegralTransformWeighted()
  208.         ).histogramTest (
  209.             HistogramTestSetting.AnfusoKaryampasNawroth2017 (
  210.                 PlottingPositionGeneratorHeuristic.NIST2013 (orderStatisticsCount)
  211.             )
  212.         );

  213.         double[] pValueIncrementalArray = histogram.pValueIncrementalArray();

  214.         double[] gapArray = histogram.testStatisticArray();

  215.         System.out.println ("\t|----------------------------||");

  216.         System.out.println ("\t| CPT Integrand Distribution ||");

  217.         System.out.println ("\t|----------------------------||");

  218.         for (int histogramIndex = 0; histogramIndex <= orderStatisticsCount + 1; ++histogramIndex)
  219.         {
  220.             System.out.println (
  221.                 "\t|" +
  222.                 FormatUtil.FormatDouble (gapArray[histogramIndex], 1, 9, 1.) + " | " +
  223.                 FormatUtil.FormatDouble (pValueIncrementalArray[histogramIndex], 1, 9, 1.) + " ||"
  224.             );
  225.         }

  226.         System.out.println ("\t|----------------------------||");
  227.     }

  228.     public static final void main (
  229.         final String[] argumentArray)
  230.         throws Exception
  231.     {
  232.         EnvManager.InitEnv ("");

  233.         int drawCount = 100000;
  234.         int sampleCount = 10;
  235.         double mean = 0.;
  236.         double sampleVolatility = 2.;
  237.         int orderStatisticsCount = 20;
  238.         double hypothesis1Volatility = 1.;
  239.         double hypothesis2Volatility = 3.;

  240.         Sample sample = GenerateSample (
  241.             mean,
  242.             sampleVolatility,
  243.             drawCount
  244.         );

  245.         DiscriminatoryPowerAnalyzer discriminatoryPowerAnalysis = DiscriminatoryPowerAnalyzer.FromSample (
  246.             sample,
  247.             GapTestSetting.ConservativePortfolioLossTest (GapLossWeightFunction.CramersVonMises())
  248.         );

  249.         DistanceTest (
  250.             discriminatoryPowerAnalysis.gapTest (
  251.                 GenerateEnsemble (
  252.                     mean,
  253.                     hypothesis1Volatility,
  254.                     drawCount,
  255.                     sampleCount
  256.                 )
  257.             ),
  258.             orderStatisticsCount
  259.         );

  260.         DistanceTest (
  261.             discriminatoryPowerAnalysis.gapTest (
  262.                 GenerateEnsemble (
  263.                     mean,
  264.                     hypothesis2Volatility,
  265.                     drawCount,
  266.                     sampleCount
  267.                 )
  268.             ),
  269.             orderStatisticsCount
  270.         );

  271.         EnvManager.TerminateEnv();
  272.     }
  273. }