ModelMTMDistribution11a.java

  1. package org.drip.sample.anfuso2017;

  2. import org.drip.measure.gaussian.R1UnivariateNormal;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.validation.evidence.Sample;
  6. import org.drip.validation.hypothesis.ProbabilityIntegralTransform;

  7. /*
  8.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  9.  */

  10. /*!
  11.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  12.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  13.  *
  14.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  15.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  16.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  17.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  18.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  19.  *      and computational support.
  20.  *  
  21.  *      https://lakshmidrip.github.io/DROP/
  22.  *  
  23.  *  DROP is composed of three modules:
  24.  *  
  25.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  26.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  27.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  28.  *
  29.  *  DROP Product Core implements libraries for the following:
  30.  *  - Fixed Income Analytics
  31.  *  - Loan Analytics
  32.  *  - Transaction Cost Analytics
  33.  *
  34.  *  DROP Portfolio Core implements libraries for the following:
  35.  *  - Asset Allocation Analytics
  36.  *  - Asset Liability Management Analytics
  37.  *  - Capital Estimation Analytics
  38.  *  - Exposure Analytics
  39.  *  - Margin Analytics
  40.  *  - XVA Analytics
  41.  *
  42.  *  DROP Computational Core implements libraries for the following:
  43.  *  - Algorithm Support
  44.  *  - Computation Support
  45.  *  - Function Analysis
  46.  *  - Model Validation
  47.  *  - Numerical Analysis
  48.  *  - Numerical Optimizer
  49.  *  - Spline Builder
  50.  *  - Statistical Learning
  51.  *
  52.  *  Documentation for DROP is Spread Over:
  53.  *
  54.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  55.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  56.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  57.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  58.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  59.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  60.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  61.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  62.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  63.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  64.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  65.  *
  66.  *  Licensed under the Apache License, Version 2.0 (the "License");
  67.  *      you may not use this file except in compliance with the License.
  68.  *  
  69.  *  You may obtain a copy of the License at
  70.  *      http://www.apache.org/licenses/LICENSE-2.0
  71.  *  
  72.  *  Unless required by applicable law or agreed to in writing, software
  73.  *      distributed under the License is distributed on an "AS IS" BASIS,
  74.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  75.  *  
  76.  *  See the License for the specific language governing permissions and
  77.  *      limitations under the License.
  78.  */

  79. /**
  80.  * <i>ModelMTMDistribution11a</i> illustrates the Model MTM Distributions laid out in Table 11a of Anfuso,
  81.  * Karyampas, and Nawroth (2017).
  82.  *
  83.  *  <br><br>
  84.  *  <ul>
  85.  *      <li>
  86.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  87.  *              Back-testing Credit Exposure Models
  88.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  89.  *      </li>
  90.  *      <li>
  91.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  92.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  93.  *      </li>
  94.  *      <li>
  95.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  96.  *              Pricing, Palgrave Macmillan
  97.  *      </li>
  98.  *      <li>
  99.  *          Wikipedia (2018): Probability Integral Transform
  100.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  101.  *      </li>
  102.  *      <li>
  103.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  104.  *      </li>
  105.  *  </ul>
  106.  *
  107.  *  <br><br>
  108.  *  <ul>
  109.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  110.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  111.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  112.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  113.  *  </ul>
  114.  * <br><br>
  115.  *
  116.  * @author Lakshmi Krishnamurthy
  117.  */

  118. public class ModelMTMDistribution11a
  119. {

  120.     private static final double UnivariateRandom (
  121.         final double mean,
  122.         final double sigma)
  123.         throws Exception
  124.     {
  125.         return new R1UnivariateNormal (
  126.             mean,
  127.             sigma
  128.         ).random();
  129.     }

  130.     private static final Sample GenerateSample (
  131.         final double mean,
  132.         final double sigma,
  133.         final int drawCount)
  134.         throws Exception
  135.     {
  136.         double[] univariateRandomArray = new double[drawCount];

  137.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  138.         {
  139.             univariateRandomArray[drawIndex] = UnivariateRandom (
  140.                 mean,
  141.                 sigma
  142.             );
  143.         }

  144.         return new Sample (univariateRandomArray);
  145.     }

  146.     private static final void ProbabilityPlot (
  147.         final ProbabilityIntegralTransform pitTooHighVolatility,
  148.         final ProbabilityIntegralTransform pitCorrectVolatility,
  149.         final ProbabilityIntegralTransform pitTooLowVolatility,
  150.         final double xLeft,
  151.         final double xRight,
  152.         final double xWidth)
  153.         throws Exception
  154.     {
  155.         double leftProbabilityTooHighVolatility = 0.;
  156.         double leftProbabilityCorrectVolatility = 0.;
  157.         double leftProbabilityTooLowVolatility = 0.;

  158.         for (double x = xLeft; x <= xRight; x += xWidth)
  159.         {
  160.             double probabilityTooHighVolatility = pitTooHighVolatility.pValue (x);

  161.             double probabilityCorrectVolatility = pitCorrectVolatility.pValue (x);

  162.             double probabilityTooLowVolatility = pitTooLowVolatility.pValue (x);

  163.             System.out.println (
  164.                 "\t| " +
  165.                 FormatUtil.FormatDouble (x, 1, 2, 1.) + " | " +
  166.                 FormatUtil.FormatDouble (probabilityTooHighVolatility - leftProbabilityTooHighVolatility, 1, 8, 1.) + " | " +
  167.                 FormatUtil.FormatDouble (probabilityCorrectVolatility - leftProbabilityCorrectVolatility, 1, 8, 1.) + " | " +
  168.                 FormatUtil.FormatDouble (probabilityTooLowVolatility - leftProbabilityTooLowVolatility, 1, 8, 1.) + " ||"
  169.             );

  170.             leftProbabilityTooHighVolatility = probabilityTooHighVolatility;
  171.             leftProbabilityCorrectVolatility = probabilityCorrectVolatility;
  172.             leftProbabilityTooLowVolatility = probabilityTooLowVolatility;
  173.         }
  174.     }

  175.     public static final void main (
  176.         final String[] argumentArray)
  177.         throws Exception
  178.     {
  179.         EnvManager.InitEnv ("");

  180.         int drawCount = 1000000;
  181.         double mean = 0.;
  182.         double volatilityTooHigh = 3.;
  183.         double volatilityCorrect = 2.;
  184.         double volatilityTooLow = 1.;
  185.         double xLeft = -7.00;
  186.         double xRight = 7.00;
  187.         double xWidth = 0.50;

  188.         Sample sampleVolatilityTooHigh = GenerateSample (
  189.             mean,
  190.             volatilityTooHigh,
  191.             drawCount
  192.         );

  193.         Sample sampleVolatilityCorrect = GenerateSample (
  194.             mean,
  195.             volatilityCorrect,
  196.             drawCount
  197.         );

  198.         Sample sampleVolatilityTooLow = GenerateSample (
  199.             mean,
  200.             volatilityTooLow,
  201.             drawCount
  202.         );

  203.         System.out.println ("\t|-------------------------------------------------||");

  204.         System.out.println ("\t|        MODEL MTM DISTRIBUTION COMPARISON        ||");

  205.         System.out.println ("\t|-------------------------------------------------||");

  206.         System.out.println ("\t|     L -> R:                                     ||");

  207.         System.out.println ("\t|          - Ordinate                             ||");

  208.         System.out.println ("\t|          - p-Value (Volatility Too High)        ||");

  209.         System.out.println ("\t|          - p-Value (Volatility Correct)         ||");

  210.         System.out.println ("\t|          - p-Value (Volatility Too Low)         ||");

  211.         System.out.println ("\t|-------------------------------------------------||");

  212.         ProbabilityPlot (
  213.             sampleVolatilityTooHigh.nativeProbabilityIntegralTransform(),
  214.             sampleVolatilityCorrect.nativeProbabilityIntegralTransform(),
  215.             sampleVolatilityTooLow.nativeProbabilityIntegralTransform(),
  216.             xLeft,
  217.             xRight,
  218.             xWidth
  219.         );

  220.         System.out.println ("\t|-------------------------------------------------||");

  221.         EnvManager.TerminateEnv();
  222.     }
  223. }