WeightedGapDistribution2a.java

  1. package org.drip.sample.anfuso2017;

  2. import org.drip.measure.gaussian.R1UnivariateNormal;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.validation.distance.GapLossWeightFunction;
  6. import org.drip.validation.distance.GapTestOutcome;
  7. import org.drip.validation.distance.GapTestSetting;
  8. import org.drip.validation.evidence.Ensemble;
  9. import org.drip.validation.evidence.Sample;
  10. import org.drip.validation.evidence.TestStatisticEvaluator;
  11. import org.drip.validation.hypothesis.HistogramTestOutcome;
  12. import org.drip.validation.hypothesis.HistogramTestSetting;
  13. import org.drip.validation.hypothesis.ProbabilityIntegralTransformTest;
  14. import org.drip.validation.quantile.PlottingPositionGenerator;
  15. import org.drip.validation.quantile.PlottingPositionGeneratorHeuristic;
  16. import org.drip.validation.riskfactorsingle.DiscriminatoryPowerAnalyzer;

  17. /*
  18.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  19.  */

  20. /*!
  21.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  22.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  23.  *
  24.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  25.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  26.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  27.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  28.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  29.  *      and computational support.
  30.  *  
  31.  *      https://lakshmidrip.github.io/DROP/
  32.  *  
  33.  *  DROP is composed of three modules:
  34.  *  
  35.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  36.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  37.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  38.  *
  39.  *  DROP Product Core implements libraries for the following:
  40.  *  - Fixed Income Analytics
  41.  *  - Loan Analytics
  42.  *  - Transaction Cost Analytics
  43.  *
  44.  *  DROP Portfolio Core implements libraries for the following:
  45.  *  - Asset Allocation Analytics
  46.  *  - Asset Liability Management Analytics
  47.  *  - Capital Estimation Analytics
  48.  *  - Exposure Analytics
  49.  *  - Margin Analytics
  50.  *  - XVA Analytics
  51.  *
  52.  *  DROP Computational Core implements libraries for the following:
  53.  *  - Algorithm Support
  54.  *  - Computation Support
  55.  *  - Function Analysis
  56.  *  - Model Validation
  57.  *  - Numerical Analysis
  58.  *  - Numerical Optimizer
  59.  *  - Spline Builder
  60.  *  - Statistical Learning
  61.  *
  62.  *  Documentation for DROP is Spread Over:
  63.  *
  64.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  65.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  66.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  67.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  68.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  69.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  70.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  71.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  72.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  73.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  74.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  75.  *
  76.  *  Licensed under the Apache License, Version 2.0 (the "License");
  77.  *      you may not use this file except in compliance with the License.
  78.  *  
  79.  *  You may obtain a copy of the License at
  80.  *      http://www.apache.org/licenses/LICENSE-2.0
  81.  *  
  82.  *  Unless required by applicable law or agreed to in writing, software
  83.  *      distributed under the License is distributed on an "AS IS" BASIS,
  84.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  85.  *  
  86.  *  See the License for the specific language governing permissions and
  87.  *      limitations under the License.
  88.  */

  89. /**
  90.  * <i>WeightedGapDistribution2a</i> demonstrates the Weighted Gap Distribution illustrated in Table 2a of
  91.  * Anfuso, Karyampas, and Nawroth (2013).
  92.  *
  93.  *  <br><br>
  94.  *  <ul>
  95.  *      <li>
  96.  *          Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
  97.  *              Back-testing Credit Exposure Models
  98.  *              https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
  99.  *      </li>
  100.  *      <li>
  101.  *          Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
  102.  *              Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
  103.  *      </li>
  104.  *      <li>
  105.  *          Kenyon, C., and R. Stamm (2012): Discounting, LIBOR, CVA, and Funding: Interest Rate and Credit
  106.  *              Pricing, Palgrave Macmillan
  107.  *      </li>
  108.  *      <li>
  109.  *          Wikipedia (2018): Probability Integral Transform
  110.  *              https://en.wikipedia.org/wiki/Probability_integral_transform
  111.  *      </li>
  112.  *      <li>
  113.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  114.  *      </li>
  115.  *  </ul>
  116.  *
  117.  *  <br><br>
  118.  *  <ul>
  119.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  120.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  121.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  122.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/anfuso2017/README.md">Anfuso, Karyampas, and Nawroth (2013) Replications</a></li>
  123.  *  </ul>
  124.  * <br><br>
  125.  *
  126.  * @author Lakshmi Krishnamurthy
  127.  */

  128. public class WeightedGapDistribution2a
  129. {

  130.     private static final double UnivariateRandom (
  131.         final double mean,
  132.         final double sigma)
  133.         throws Exception
  134.     {
  135.         return new R1UnivariateNormal (
  136.             mean,
  137.             sigma
  138.         ).random();
  139.     }

  140.     private static final Sample GenerateSample (
  141.         final double mean,
  142.         final double sigma,
  143.         final int drawCount)
  144.         throws Exception
  145.     {
  146.         double[] univariateRandomArray = new double[drawCount];

  147.         for (int drawIndex = 0; drawIndex < drawCount; ++drawIndex)
  148.         {
  149.             univariateRandomArray[drawIndex] = UnivariateRandom (
  150.                 mean,
  151.                 sigma
  152.             );
  153.         }

  154.         return new Sample (univariateRandomArray);
  155.     }

  156.     private static final Sample[] GenerateSampleArray (
  157.         final double mean,
  158.         final double sigma,
  159.         final int drawCount,
  160.         final int sampleCount)
  161.         throws Exception
  162.     {
  163.         Sample[] sampleArray = new Sample[sampleCount];

  164.         for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
  165.         {
  166.             sampleArray[sampleIndex] = GenerateSample (
  167.                 mean,
  168.                 sigma,
  169.                 drawCount
  170.             );
  171.         }

  172.         return sampleArray;
  173.     }

  174.     private static final Ensemble GenerateEnsemble (
  175.         final double mean,
  176.         final double sigma,
  177.         final int drawCount,
  178.         final int sampleCount)
  179.         throws Exception
  180.     {
  181.         return new Ensemble (
  182.             GenerateSampleArray (
  183.                 mean,
  184.                 sigma,
  185.                 drawCount,
  186.                 sampleCount
  187.             ),
  188.             new TestStatisticEvaluator[]
  189.             {
  190.                 new TestStatisticEvaluator()
  191.                 {
  192.                     public double evaluate (
  193.                         final double[] drawArray)
  194.                         throws Exception
  195.                     {
  196.                         return 1.;
  197.                     }
  198.                 }
  199.             }
  200.         );
  201.     }

  202.     private static final void DistanceTest (
  203.         final GapTestOutcome gapTestOutcome,
  204.         final PlottingPositionGenerator plottingPositionGenerator)
  205.         throws Exception
  206.     {
  207.         HistogramTestOutcome histogram = new ProbabilityIntegralTransformTest (
  208.             gapTestOutcome.probabilityIntegralTransformWeighted()
  209.         ).histogramTest (
  210.             HistogramTestSetting.AnfusoKaryampasNawroth2017 (
  211.                 plottingPositionGenerator
  212.             )
  213.         );

  214.         double[] pValueIncrementalArray = histogram.pValueIncrementalArray();

  215.         double[] pValueCumulativeArray = histogram.pValueCumulativeArray();

  216.         double thresholdTestStatistic = histogram.thresholdTestStatistic();

  217.         double[] gapArray = histogram.testStatisticArray();

  218.         double distance = gapTestOutcome.distance();

  219.         System.out.println ("\t|--------------------------------------------------------------------||");

  220.         System.out.println ("\t|           Normal Anfuso Karyampas Nawroth Distance Test            ||");

  221.         System.out.println ("\t|--------------------------------------------------------------------||");

  222.         System.out.println ("\t|    L -> R:                                                         ||");

  223.         System.out.println ("\t|        - Weighted Distance Metric                                  ||");

  224.         System.out.println ("\t|        - Cumulative p-Value                                        ||");

  225.         System.out.println ("\t|        - Incremental p-Value                                       ||");

  226.         System.out.println ("\t|        - Ensemble Weighted Distance                                ||");

  227.         System.out.println ("\t|        - p-Value Threshold Distance                                ||");

  228.         System.out.println ("\t|--------------------------------------------------------------------||");

  229.         for (int histogramIndex = 0;
  230.             histogramIndex <= plottingPositionGenerator.orderStatisticCount() + 1;
  231.             ++histogramIndex)
  232.         {
  233.             System.out.println (
  234.                 "\t|" +
  235.                 FormatUtil.FormatDouble (gapArray[histogramIndex], 1, 8, 1.) + " | " +
  236.                 FormatUtil.FormatDouble (pValueCumulativeArray[histogramIndex], 1, 8, 1.) + " | " +
  237.                 FormatUtil.FormatDouble (pValueIncrementalArray[histogramIndex], 1, 8, 1.) + " | " +
  238.                 FormatUtil.FormatDouble (distance, 1, 8, 1.) + " | " +
  239.                 FormatUtil.FormatDouble (thresholdTestStatistic, 1, 8, 1.) + " ||"
  240.             );
  241.         }

  242.         System.out.println ("\t|--------------------------------------------------------------------||");
  243.     }

  244.     public static final void main (
  245.         final String[] argumentArray)
  246.         throws Exception
  247.     {
  248.         EnvManager.InitEnv ("");

  249.         int drawCount = 3780;
  250.         int sampleCount = 1000;
  251.         double annualMean = 0.;
  252.         double horizon = 1. / 12;
  253.         double annualVolatility = 0.1;
  254.         int orderStatisticsCount = 20;

  255.         double horizonVolatility = annualVolatility * Math.sqrt (horizon);

  256.         Sample sample = GenerateSample (
  257.             annualMean,
  258.             horizonVolatility,
  259.             drawCount
  260.         );

  261.         DiscriminatoryPowerAnalyzer discriminatoryPowerAnalysis = DiscriminatoryPowerAnalyzer.FromSample (
  262.             sample,
  263.             GapTestSetting.RiskFactorLossTest (
  264.                 GapLossWeightFunction.AndersonDarling()
  265.             )
  266.         );

  267.         Ensemble hypothesis = GenerateEnsemble (
  268.             annualMean,
  269.             horizonVolatility,
  270.             drawCount,
  271.             sampleCount
  272.         );

  273.         PlottingPositionGenerator plottingPositionGenerator = PlottingPositionGeneratorHeuristic.NIST2013
  274.             (orderStatisticsCount);

  275.         GapTestOutcome gapTestOutcome = discriminatoryPowerAnalysis.gapTest (hypothesis);

  276.         DistanceTest (
  277.             gapTestOutcome,
  278.             plottingPositionGenerator
  279.         );

  280.         EnvManager.TerminateEnv();
  281.     }
  282. }