ScaleSensitiveFunction.java

  1. package org.drip.sample.coveringnumber;

  2. import org.drip.function.definition.R1ToR1;
  3. import org.drip.numerical.common.FormatUtil;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.spaces.cover.ScaleSensitiveCoveringBounds;

  6. /*
  7.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  8.  */

  9. /*!
  10.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  12.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  13.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  14.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  15.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  16.  *
  17.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  18.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  19.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  20.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  21.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  22.  *      and computational support.
  23.  *  
  24.  *      https://lakshmidrip.github.io/DROP/
  25.  *  
  26.  *  DROP is composed of three modules:
  27.  *  
  28.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  29.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  30.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  31.  *
  32.  *  DROP Product Core implements libraries for the following:
  33.  *  - Fixed Income Analytics
  34.  *  - Loan Analytics
  35.  *  - Transaction Cost Analytics
  36.  *
  37.  *  DROP Portfolio Core implements libraries for the following:
  38.  *  - Asset Allocation Analytics
  39.  *  - Asset Liability Management Analytics
  40.  *  - Capital Estimation Analytics
  41.  *  - Exposure Analytics
  42.  *  - Margin Analytics
  43.  *  - XVA Analytics
  44.  *
  45.  *  DROP Computational Core implements libraries for the following:
  46.  *  - Algorithm Support
  47.  *  - Computation Support
  48.  *  - Function Analysis
  49.  *  - Model Validation
  50.  *  - Numerical Analysis
  51.  *  - Numerical Optimizer
  52.  *  - Spline Builder
  53.  *  - Statistical Learning
  54.  *
  55.  *  Documentation for DROP is Spread Over:
  56.  *
  57.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  58.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  59.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  60.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  61.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  62.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  63.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  64.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  65.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  66.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  67.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  68.  *
  69.  *  Licensed under the Apache License, Version 2.0 (the "License");
  70.  *      you may not use this file except in compliance with the License.
  71.  *  
  72.  *  You may obtain a copy of the License at
  73.  *      http://www.apache.org/licenses/LICENSE-2.0
  74.  *  
  75.  *  Unless required by applicable law or agreed to in writing, software
  76.  *      distributed under the License is distributed on an "AS IS" BASIS,
  77.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  78.  *  
  79.  *  See the License for the specific language governing permissions and
  80.  *      limitations under the License.
  81.  */

  82. /**
  83.  * <i>ScaleSensitiveFunction</i> demonstrates Computation of the Restricted Covers, Restricted Probability
  84.  * Bounds, the Lower Bounds, and the Upper Bounds for Functions that are absolutely Bounded.
  85.  *  
  86.  * <br><br>
  87.  *  <ul>
  88.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  89.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning</a></li>
  90.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">DROP API Construction and Usage</a></li>
  91.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/coveringnumber/README.md">R<sup>d</sup>Agnostic Function Covering Number Bounds</a></li>
  92.  *  </ul>
  93.  * <br><br>
  94.  *
  95.  * @author Lakshmi Krishnamurthy
  96.  */

  97. public class ScaleSensitiveFunction {

  98.     public static final void main (
  99.         final String[] astrArgs)
  100.         throws Exception
  101.     {
  102.         EnvManager.InitEnv ("");

  103.         final int iSampleSize = 10;

  104.         R1ToR1 auFatShatter = new R1ToR1 (null) {
  105.             @Override public double evaluate (
  106.                 final double dblX)
  107.                 throws Exception
  108.             {
  109.                 return iSampleSize;
  110.             }
  111.         };

  112.         ScaleSensitiveCoveringBounds sscn = new ScaleSensitiveCoveringBounds (
  113.             auFatShatter,
  114.             iSampleSize
  115.         );

  116.         double[] adblCover = new double[] {
  117.             500., 600., 700., 800., 900., 960.
  118.         };

  119.         System.out.println ("\n\t||------------------------------------------------||");

  120.         System.out.println ("\t||    Scale    Sensitive    Covering   Numbers    ||");

  121.         System.out.println ("\t||    -----    ---------    --------   -------    ||");

  122.         System.out.println ("\t|| L -> R:                                        ||");

  123.         System.out.println ("\t||   Sample Size Lower Bound                      ||");

  124.         System.out.println ("\t||   Restricted Subset Cardinality                ||");

  125.         System.out.println ("\t||   Probability of the Cover Weight Upper Bound  ||");

  126.         System.out.println ("\t||   Log Log Covering Number Lower Bound          ||");

  127.         System.out.println ("\t||   Log Log Covering Number Upper Bound          ||");

  128.         System.out.println ("\t||------------------------------------------------||");

  129.         for (double dblCover : adblCover)
  130.             System.out.println ("\t|| [" + FormatUtil.FormatDouble (dblCover, 3, 0, 1.) + "] => " +
  131.                 FormatUtil.FormatDouble (sscn.sampleSizeLowerBound (dblCover), 1, 1, 1.) + " |" +
  132.                 FormatUtil.FormatDouble (sscn.restrictedSubsetCardinality (dblCover), 3, 0, 1.) + " | " +
  133.                 FormatUtil.FormatDouble (sscn.upperProbabilityBoundWeight (dblCover), 5, 0, 1.) + " | " +
  134.                 FormatUtil.FormatDouble (Math.log (sscn.logLowerBound (dblCover)), 1, 2, 1.) + " -> " +
  135.                 FormatUtil.FormatDouble (Math.log (sscn.logUpperBound (dblCover)), 1, 2, 1.) + " ||"
  136.             );

  137.         System.out.println ("\t||------------------------------------------------||");

  138.         EnvManager.TerminateEnv();
  139.     }
  140. }