GlivenkoCantelliUniformBound.java

  1. package org.drip.sample.efronstein;

  2. import org.drip.numerical.common.FormatUtil;
  3. import org.drip.sequence.custom.GlivenkoCantelliUniformDeviation;
  4. import org.drip.sequence.functional.*;
  5. import org.drip.sequence.metrics.SingleSequenceAgnosticMetrics;
  6. import org.drip.sequence.random.*;
  7. import org.drip.service.env.EnvManager;

  8. /*
  9.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  10.  */

  11. /*!
  12.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  13.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  14.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  15.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  16.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  17.  *
  18.  *  This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
  19.  *      calculations, valuation adjustment, and portfolio construction within and across fixed income,
  20.  *      credit, commodity, equity, FX, and structured products.
  21.  *  
  22.  *      https://lakshmidrip.github.io/DROP/
  23.  *  
  24.  *  DROP is composed of three modules:
  25.  *  
  26.  *  - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
  27.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  28.  *  - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
  29.  *
  30.  *  DROP Analytics Core implements libraries for the following:
  31.  *  - Fixed Income Analytics
  32.  *  - Asset Backed Analytics
  33.  *  - XVA Analytics
  34.  *  - Exposure and Margin Analytics
  35.  *
  36.  *  DROP Portfolio Core implements libraries for the following:
  37.  *  - Asset Allocation Analytics
  38.  *  - Transaction Cost Analytics
  39.  *
  40.  *  DROP Numerical Core implements libraries for the following:
  41.  *  - Statistical Learning
  42.  *  - Numerical Optimizer
  43.  *  - Spline Builder
  44.  *  - Algorithm Support
  45.  *
  46.  *  Documentation for DROP is Spread Over:
  47.  *
  48.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  49.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  50.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  51.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  52.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  53.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  54.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  55.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  56.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  57.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  58.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  59.  *
  60.  *  Licensed under the Apache License, Version 2.0 (the "License");
  61.  *      you may not use this file except in compliance with the License.
  62.  *  
  63.  *  You may obtain a copy of the License at
  64.  *      http://www.apache.org/licenses/LICENSE-2.0
  65.  *  
  66.  *  Unless required by applicable law or agreed to in writing, software
  67.  *      distributed under the License is distributed on an "AS IS" BASIS,
  68.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  69.  *  
  70.  *  See the License for the specific language governing permissions and
  71.  *      limitations under the License.
  72.  */

  73. /**
  74.  * <i>GlivenkoCantelliUniformBound</i> demonstrates the Computation of the Probabilistic Bounds for the
  75.  * Uniform Deviation of an Empirical Sample from its Population Mean using Variants of the Efron-Stein
  76.  * Methodology.
  77.  *  
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
  81.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  82.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
  83.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/efronstein/README.md">Efron-Stein Semi-Agnostic Sequence Bounds</a></li>
  84.  *  </ul>
  85.  * <br><br>
  86.  *
  87.  * @author Lakshmi Krishnamurthy
  88.  */

  89. public class GlivenkoCantelliUniformBound {

  90.     private static final SingleSequenceAgnosticMetrics[] IIDDraw (
  91.         final UnivariateSequenceGenerator rsg,
  92.         final int iNumSample)
  93.         throws Exception
  94.     {
  95.         SingleSequenceAgnosticMetrics[] aSSAM = new SingleSequenceAgnosticMetrics[iNumSample];

  96.         for (int i = 0; i < iNumSample; ++i)
  97.             aSSAM[i] = rsg.sequence (
  98.                 iNumSample,
  99.                 null
  100.             );

  101.         return aSSAM;
  102.     }

  103.     private static final GlivenkoCantelliUniformDeviation GlivenkoCantelliFunction (
  104.         final Binary binarySequenceGenerator,
  105.         final int iNumVariate)
  106.         throws Exception
  107.     {
  108.         return GlivenkoCantelliUniformDeviation.Create (
  109.             new BoundedIdempotentUnivariateRandom (
  110.                 binarySequenceGenerator.positiveProbability(),
  111.                 null,
  112.                 1.
  113.             ),
  114.             iNumVariate
  115.         );
  116.     }

  117.     private static final void MartingaleDifferencesRun (
  118.         final Binary binarySequenceGenerator,
  119.         final int iNumSample,
  120.         final int iNumSet)
  121.         throws Exception
  122.     {
  123.         String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";

  124.         for (int j = 0; j < iNumSet; ++j) {
  125.             SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
  126.                 binarySequenceGenerator,
  127.                 iNumSample
  128.             );

  129.             EfronSteinMetrics esam = new EfronSteinMetrics (
  130.                 GlivenkoCantelliFunction (
  131.                     binarySequenceGenerator,
  132.                     iNumSample
  133.                 ),
  134.                 aSSAM
  135.             );

  136.             if (0 != j) strDump += " |";

  137.             strDump += FormatUtil.FormatDouble (esam.martingaleVarianceUpperBound(), 1, 3, 1.);
  138.         }

  139.         System.out.println (strDump + " |");
  140.     }

  141.     private static final void GhostVariateVarianceRun (
  142.         final Binary binarySequenceGenerator,
  143.         final int iNumSample,
  144.         final int iNumSet)
  145.         throws Exception
  146.     {
  147.         String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";

  148.         for (int j = 0; j < iNumSet; ++j) {
  149.             SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
  150.                 binarySequenceGenerator,
  151.                 iNumSample
  152.             );

  153.             EfronSteinMetrics esam = new EfronSteinMetrics (
  154.                 GlivenkoCantelliFunction (
  155.                     binarySequenceGenerator,
  156.                     iNumSample
  157.                 ),
  158.                 aSSAM
  159.             );

  160.             SingleSequenceAgnosticMetrics[] aSSAMGhost = IIDDraw (
  161.                 binarySequenceGenerator,
  162.                 iNumSample
  163.             );

  164.             if (0 != j) strDump += " |";

  165.             strDump += FormatUtil.FormatDouble (esam.ghostVarianceUpperBound (aSSAMGhost), 1, 3, 1.);
  166.         }

  167.         System.out.println (strDump + " |");
  168.     }

  169.     private static final void EfronSteinSteeleRun (
  170.         final Binary binarySequenceGenerator,
  171.         final int iNumSample,
  172.         final int iNumSet)
  173.         throws Exception
  174.     {
  175.         String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";

  176.         for (int j = 0; j < iNumSet; ++j) {
  177.             SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
  178.                 binarySequenceGenerator,
  179.                 iNumSample
  180.             );

  181.             EfronSteinMetrics esam = new EfronSteinMetrics (
  182.                 GlivenkoCantelliFunction (
  183.                     binarySequenceGenerator,
  184.                     iNumSample
  185.                 ),
  186.                 aSSAM
  187.             );

  188.             SingleSequenceAgnosticMetrics[] aSSAMGhost = IIDDraw (
  189.                 binarySequenceGenerator,
  190.                 iNumSample
  191.             );

  192.             if (0 != j) strDump += " |";

  193.             strDump += FormatUtil.FormatDouble (esam.efronSteinSteeleBound (aSSAMGhost), 1, 3, 1.);
  194.         }

  195.         System.out.println (strDump + " |");
  196.     }

  197.     private static final void PivotDifferencesRun (
  198.         final Binary binarySequenceGenerator,
  199.         final int iNumSample,
  200.         final int iNumSet)
  201.         throws Exception
  202.     {
  203.         String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";

  204.         for (int j = 0; j < iNumSet; ++j) {
  205.             MultivariateRandom func = GlivenkoCantelliFunction (
  206.                 binarySequenceGenerator,
  207.                 iNumSample
  208.             );

  209.             SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
  210.                 binarySequenceGenerator,
  211.                 iNumSample
  212.             );

  213.             EfronSteinMetrics esam = new EfronSteinMetrics (
  214.                 func,
  215.                 aSSAM
  216.             );

  217.             if (0 != j) strDump += " |";

  218.             strDump += FormatUtil.FormatDouble (esam.pivotVarianceUpperBound (func), 1, 3, 1.);
  219.         }

  220.         System.out.println (strDump + " |");
  221.     }

  222.     private static final void BoundedDifferencesRun (
  223.         final Binary binarySequenceGenerator,
  224.         final int iNumSample,
  225.         final int iNumSet)
  226.         throws Exception
  227.     {
  228.         String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";

  229.         for (int j = 0; j < iNumSet; ++j) {
  230.             SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
  231.                 binarySequenceGenerator,
  232.                 iNumSample
  233.             );

  234.             EfronSteinMetrics esam = new EfronSteinMetrics (
  235.                 GlivenkoCantelliFunction (
  236.                     binarySequenceGenerator,
  237.                     iNumSample
  238.                 ),
  239.                 aSSAM
  240.             );

  241.             if (0 != j) strDump += " |";

  242.             strDump += FormatUtil.FormatDouble (esam.boundedVarianceUpperBound(), 1, 3, 1.);
  243.         }

  244.         System.out.println (strDump + " |");
  245.     }

  246.     public static final void main (
  247.         final String[] astrArgs)
  248.         throws Exception
  249.     {
  250.         EnvManager.InitEnv ("");

  251.         int iNumSet = 5;

  252.         int[] aiSampleSize = new int[] {
  253.             3, 10, 25, 50
  254.         };

  255.         Binary bin = new Binary (0.7);

  256.         System.out.println ("\n\t|-----------------------------------------------|");

  257.         System.out.println ("\t|  Martingale Differences Variance Upper Bound  |");

  258.         System.out.println ("\t|-----------------------------------------------|");

  259.         for (int iSampleSize : aiSampleSize)
  260.             MartingaleDifferencesRun (
  261.                 bin,
  262.                 iSampleSize,
  263.                 iNumSet
  264.             );

  265.         System.out.println ("\t|-----------------------------------------------|");

  266.         System.out.println ("\n\t|-----------------------------------------------|");

  267.         System.out.println ("\t|   Symmetrized Variate Variance Upper Bound    |");

  268.         System.out.println ("\t|-----------------------------------------------|");

  269.         for (int iSampleSize : aiSampleSize)
  270.             GhostVariateVarianceRun (
  271.                 bin,
  272.                 iSampleSize,
  273.                 iNumSet
  274.             );

  275.         System.out.println ("\t|-----------------------------------------------|");

  276.         aiSampleSize = new int[] {
  277.             3, 10, 25, 50, 75, 99
  278.         };

  279.         System.out.println ("\n\t|-----------------------------------------------|");

  280.         System.out.println ("\t|    Efron-Stein-Steele Variance Upper Bound    |");

  281.         System.out.println ("\t|-----------------------------------------------|");

  282.         for (int iSampleSize : aiSampleSize)
  283.             EfronSteinSteeleRun (
  284.                 bin,
  285.                 iSampleSize,
  286.                 iNumSet
  287.             );

  288.         System.out.println ("\t|-----------------------------------------------|");

  289.         System.out.println ("\n\t|-----------------------------------------------|");

  290.         System.out.println ("\t|    Pivoted Differences Variance Upper Bound   |");

  291.         System.out.println ("\t|-----------------------------------------------|");

  292.         for (int iSampleSize : aiSampleSize)
  293.             PivotDifferencesRun (
  294.                 bin,
  295.                 iSampleSize,
  296.                 iNumSet
  297.             );

  298.         System.out.println ("\t|-----------------------------------------------|");

  299.         System.out.println ("\n\t|-----------------------------------------------|");

  300.         System.out.println ("\t|   Bounded Differences Variance Upper Bound    |");

  301.         System.out.println ("\t|-----------------------------------------------|");

  302.         for (int iSampleSize : aiSampleSize)
  303.             BoundedDifferencesRun (
  304.                 bin,
  305.                 iSampleSize,
  306.                 iNumSet
  307.             );

  308.         System.out.println ("\t|-----------------------------------------------|");

  309.         EnvManager.TerminateEnv();
  310.     }
  311. }