MinimumBinPackingBound.java
package org.drip.sample.efronstein;
import org.drip.numerical.common.FormatUtil;
import org.drip.sequence.custom.BinPacking;
import org.drip.sequence.functional.*;
import org.drip.sequence.metrics.SingleSequenceAgnosticMetrics;
import org.drip.sequence.random.*;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, valuation adjustment, and portfolio construction within and across fixed income,
* credit, commodity, equity, FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning
* - Numerical Optimizer
* - Spline Builder
* - Algorithm Support
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>MinimumBinPackingBound</i> demonstrates the Computation of the Probabilistic Bounds for the Minimum
* Number of Packing Bins over a Random Sequence Values using Variants of the Efron-Stein Methodology.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/efronstein/README.md">Efron-Stein Semi-Agnostic Sequence Bounds</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class MinimumBinPackingBound {
private static final SingleSequenceAgnosticMetrics[] IIDDraw (
final UnivariateSequenceGenerator rsg,
final int iNumSample)
throws Exception
{
SingleSequenceAgnosticMetrics[] aSSAM = new SingleSequenceAgnosticMetrics[iNumSample];
for (int i = 0; i < iNumSample; ++i)
aSSAM[i] = rsg.sequence (
iNumSample,
null
);
return aSSAM;
}
private static final void MartingaleDifferencesRun (
final UnivariateSequenceGenerator rsg,
final MultivariateRandom func,
final int iNumSample,
final int iNumSet)
throws Exception
{
String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";
for (int j = 0; j < iNumSet; ++j) {
SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
rsg,
iNumSample
);
EfronSteinMetrics esam = new EfronSteinMetrics (
func,
aSSAM
);
if (0 != j) strDump += " |";
strDump += FormatUtil.FormatDouble (esam.martingaleVarianceUpperBound(), 2, 2, 1.);
}
System.out.println (strDump + " |");
}
private static final void GhostVariateVarianceRun (
final UnivariateSequenceGenerator rsg,
final MultivariateRandom func,
final int iNumSample,
final int iNumSet)
throws Exception
{
String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";
for (int j = 0; j < iNumSet; ++j) {
SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
rsg,
iNumSample
);
EfronSteinMetrics esam = new EfronSteinMetrics (
func,
aSSAM
);
SingleSequenceAgnosticMetrics[] aSSAMGhost = IIDDraw (
rsg,
iNumSample
);
if (0 != j) strDump += " |";
strDump += FormatUtil.FormatDouble (esam.ghostVarianceUpperBound (aSSAMGhost), 2, 2, 1.);
}
System.out.println (strDump + " |");
}
private static final void EfronSteinSteeleRun (
final UnivariateSequenceGenerator rsg,
final MultivariateRandom func,
final int iNumSample,
final int iNumSet)
throws Exception
{
String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";
for (int j = 0; j < iNumSet; ++j) {
SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
rsg,
iNumSample
);
EfronSteinMetrics esam = new EfronSteinMetrics (
func,
aSSAM
);
SingleSequenceAgnosticMetrics[] aSSAMGhost = IIDDraw (
rsg,
iNumSample
);
if (0 != j) strDump += " |";
strDump += FormatUtil.FormatDouble (esam.efronSteinSteeleBound (aSSAMGhost), 2, 2, 1.);
}
System.out.println (strDump + " |");
}
private static final void PivotDifferencesRun (
final UnivariateSequenceGenerator rsg,
final MultivariateRandom func,
final int iNumSample,
final int iNumSet)
throws Exception
{
String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";
for (int j = 0; j < iNumSet; ++j) {
SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
rsg,
iNumSample
);
EfronSteinMetrics esam = new EfronSteinMetrics (
func,
aSSAM
);
if (0 != j) strDump += " |";
strDump += FormatUtil.FormatDouble (esam.pivotVarianceUpperBound (func), 2, 2, 1.);
}
System.out.println (strDump + " |");
}
private static final void BoundedDifferencesRun (
final UnivariateSequenceGenerator rsg,
final MultivariateRandom func,
final int iNumSample,
final int iNumSet)
throws Exception
{
String strDump = "\t| " + FormatUtil.FormatDouble (iNumSample, 2, 0, 1.) + " => ";
for (int j = 0; j < iNumSet; ++j) {
SingleSequenceAgnosticMetrics[] aSSAM = IIDDraw (
rsg,
iNumSample
);
EfronSteinMetrics esam = new EfronSteinMetrics (
func,
aSSAM
);
if (0 != j) strDump += " |";
strDump += FormatUtil.FormatDouble (esam.boundedVarianceUpperBound(), 2, 2, 1.);
}
System.out.println (strDump + " |");
}
public static final void main (
final String[] astrArgs)
throws Exception
{
EnvManager.InitEnv ("");
int iNumSet = 5;
int[] aiSampleSize = new int[] {
3, 10, 25
};
BoundedUniform bu = new BoundedUniform (
0.,
1.
);
MultivariateRandom func = BinPacking.MinimumNumberOfBins();
System.out.println ("\n\t|-----------------------------------------------|");
System.out.println ("\t| Martingale Differences Variance Upper Bound |");
System.out.println ("\t|-----------------------------------------------|");
for (int iSampleSize : aiSampleSize)
MartingaleDifferencesRun (
bu,
func,
iSampleSize,
iNumSet
);
System.out.println ("\t|-----------------------------------------------|");
System.out.println ("\n\t|-----------------------------------------------|");
System.out.println ("\t| Symmetrized Variate Variance Upper Bound |");
System.out.println ("\t|-----------------------------------------------|");
for (int iSampleSize : aiSampleSize)
GhostVariateVarianceRun (
bu,
func,
iSampleSize,
iNumSet
);
System.out.println ("\t|-----------------------------------------------|");
aiSampleSize = new int[] {
3, 10, 25, 50, 75, 99
};
System.out.println ("\n\t|-----------------------------------------------|");
System.out.println ("\t| Efron-Stein-Steele Variance Upper Bound |");
System.out.println ("\t|-----------------------------------------------|");
for (int iSampleSize : aiSampleSize)
EfronSteinSteeleRun (
bu,
func,
iSampleSize,
iNumSet
);
System.out.println ("\t|-----------------------------------------------|");
System.out.println ("\n\t|-----------------------------------------------|");
System.out.println ("\t| Pivoted Differences Variance Upper Bound |");
System.out.println ("\t|-----------------------------------------------|");
for (int iSampleSize : aiSampleSize)
PivotDifferencesRun (
bu,
func,
iSampleSize,
iNumSet
);
System.out.println ("\t|-----------------------------------------------|");
System.out.println ("\n\t|-----------------------------------------------|");
System.out.println ("\t| Bounded Differences Variance Upper Bound |");
System.out.println ("\t|-----------------------------------------------|");
for (int iSampleSize : aiSampleSize)
BoundedDifferencesRun (
bu,
func,
iSampleSize,
iNumSet
);
System.out.println ("\t|-----------------------------------------------|");
EnvManager.TerminateEnv();
}
}