CubicPolyGaussLobatto.java
- package org.drip.sample.gaussquadrature;
- import org.drip.function.definition.R1ToR1;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.numerical.integration.GaussLobattoQuadratureGenerator;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>CubicPolyGaussLobatto</i> computes the R<sup>1</sup> Numerical Estimate of the Cubic Polynomial
- * Integrand using the Gauss-Lobatto Integration Quadrature Scheme. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
- * on Mathematics</b>
- * </li>
- * <li>
- * Gil, A., J. Segura, and N. M. Temme (2007): <i>Numerical Methods for Special Functions</i>
- * <b>Society for Industrial and Applied Mathematics</b> Philadelphia
- * </li>
- * <li>
- * Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
- * The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
- * </li>
- * <li>
- * Stoer, J., and R. Bulirsch (2002): <i>Introduction to Numerical Analysis 3rd Edition</i>
- * <b>Springer</b>
- * </li>
- * <li>
- * Wikipedia (2019): Gaussian Quadrature https://en.wikipedia.org/wiki/Gaussian_quadrature
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalOptimizerLibrary.md">Numerical Optimizer</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/README.md">Numerical Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/numerical/gaussquadrature/README.md">R<sup>1</sup> Gauss-Legendre Gauss-Lobatto Quadratures</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class CubicPolyGaussLobatto
- {
- public static final void main (
- final String[] argumentArray)
- throws Exception
- {
- EnvManager.InitEnv ("");
- R1ToR1 cubicPolyIntegrand = new R1ToR1 (null)
- {
- @Override public double evaluate (
- final double x)
- throws Exception
- {
- return 7. * x * x * x - 8. * x * x - 3. * x + 3;
- }
- };
- double[] xArray =
- {
- -0.90,
- -0.80,
- -0.70,
- -0.60,
- -0.50,
- -0.40,
- -0.30,
- -0.20,
- -0.10,
- 0.00,
- 0.10,
- 0.20,
- 0.30,
- 0.40,
- 0.50,
- 0.60,
- 0.70,
- 0.80,
- 0.90,
- 1.00,
- };
- System.out.println ("\t|-----------------------------------------------------------------------------------||");
- System.out.println ("\t| Cubic Polynomial Estimate ||");
- System.out.println ("\t|-----------------------------------------------------------------------------------||");
- System.out.println ("\t| L -> R: ||");
- System.out.println ("\t| - x ||");
- System.out.println ("\t| - 7P Estimate ||");
- System.out.println ("\t| - 6P Estimate ||");
- System.out.println ("\t| - 5P Estimate ||");
- System.out.println ("\t| - 4P Estimate ||");
- System.out.println ("\t| - 3P Estimate ||");
- System.out.println ("\t|-----------------------------------------------------------------------------------||");
- for (double x : xArray)
- {
- double estimate7P = GaussLobattoQuadratureGenerator.SevenPoint (
- -1.,
- x
- ).integrate (cubicPolyIntegrand);
- double estimate6P = GaussLobattoQuadratureGenerator.SixPoint (
- -1.,
- x
- ).integrate (cubicPolyIntegrand);
- double estimate5P = GaussLobattoQuadratureGenerator.FivePoint (
- -1.,
- x
- ).integrate (cubicPolyIntegrand);
- double estimate4P = GaussLobattoQuadratureGenerator.FourPoint (
- -1.,
- x
- ).integrate (cubicPolyIntegrand);
- double estimate3P = GaussLobattoQuadratureGenerator.ThreePoint (
- -1.,
- x
- ).integrate (cubicPolyIntegrand);
- System.out.println (
- "\t| " + FormatUtil.FormatDouble (x, 1, 2, 1.) + " => " +
- FormatUtil.FormatDouble (estimate7P, 1, 9, 1.) + " | " +
- FormatUtil.FormatDouble (estimate6P, 1, 9, 1.) + " | " +
- FormatUtil.FormatDouble (estimate5P, 1, 9, 1.) + " | " +
- FormatUtil.FormatDouble (estimate4P, 1, 9, 1.) + " | " +
- FormatUtil.FormatDouble (estimate3P, 1, 9, 1.) + " ||"
- );
- }
- System.out.println ("\t|-----------------------------------------------------------------------------------||");
- EnvManager.TerminateEnv();
- }
- }