LinearAlgebra.java
- package org.drip.sample.matrix;
- import org.drip.numerical.common.*;
- import org.drip.numerical.linearalgebra.*;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, valuation adjustment, and portfolio construction within and across fixed income,
- * credit, commodity, equity, FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning
- * - Numerical Optimizer
- * - Spline Builder
- * - Algorithm Support
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LinearAlgebra</i> implements Samples for Linear Algebra and Matrix Manipulations. It demonstrates the
- * following:
- *
- * <br><br>
- * <ul>
- * <li>
- * Compute the inverse of a matrix, and multiply with the original to recover the unit matrix
- * </li>
- * <li>
- * Solves system of linear equations using one the exposed techniques
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalSupportLibrary.md">Numerical Support Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/matrix/README.md">Linear Algebra and Matrix Utilities</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LinearAlgebra {
- /*
- * Sample illustrating the Invocation of Base Matrix Inversion and Product Computation Verification.
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- private static final void InverseVerifyDump (
- final String strLabel,
- final double[][] aadblA)
- {
- double[][] aadblAInv = Matrix.InvertUsingGaussianElimination (aadblA);
- System.out.println ("--- TESTS FOR " + strLabel + "---");
- System.out.println ("---------------------------------");
- NumberUtil.Print2DArrayTriplet (
- "\tSOURCE" + strLabel,
- "INVERSE" + strLabel,
- "PRODUCT" + strLabel,
- aadblA,
- aadblAInv,
- Matrix.Product (
- aadblA,
- aadblAInv
- ),
- false
- );
- System.out.println ("---------------------------------\n\n");
- }
- /*
- * Sample illustrating the Invocation of Base Matrix Manipulation Functionality
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- public static final void MatrixManipulation()
- {
- InverseVerifyDump ("#A", new double[][] {
- {1, 2, 3},
- {4, 5, 6},
- {7, 8, 9.01}
- });
- InverseVerifyDump ("#B", new double[][] {
- { 0.1667, 0.0000, 0.0000, 0.0000},
- { 0.0000, 0.0000, 0.0000, 0.1667},
- {-0.6667, 0.5000, 0.0000, 0.0000},
- { 2.6667, -3.0000, 1.0000, 0.0000}
- });
- InverseVerifyDump ("#C", new double[][] {
- { 1.0000, 0.0000, 0.0000, 0.0000},
- { 1.0000, 1.0000, 1.0000, 1.0000},
- { 0.0000, 1.0000, 0.0000, 0.0000},
- { 0.0000, 0.0000, 2.0000, 0.0000}
- });
- InverseVerifyDump ("#D", new double[][] {
- { 0.0000, 1.0000},
- { 1.0000, 2.0000}
- });
- InverseVerifyDump ("#E", new double[][] {
- { 0.0000, 1.0000},
- { 1.0000, 0.0000}
- });
- InverseVerifyDump ("#F", new double[][] {
- { 1.0000, 0.0000, 0.0000, 0.0000},
- { 1.0000, 1.0000, 1.0000, 1.0000},
- {-1.0000, 1.0000, 0.0000, 0.0000},
- { 1.0000, 2.0000, 3.0000, 4.0000}
- });
- InverseVerifyDump ("#G", new double[][] {
- { 0.0000, 1.0000, 0.0000, 0.0000},
- { 0.0000, 0.0000, 2.0000, 0.0000},
- { 0.0434, 0.0188, 16.0083, 24.0037},
- { 0.0188, 0.0083, 24.0037, 48.0017}
- });
- }
- /*
- * Sample illustrating the Invocation of Linear System Solver Functionality
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- public static final void LinearSystemSolver()
- {
- double[][] aadblA = new double[][] {
- {1.000, 0.500, 0.333, 0.000, 0.000, 0.000},
- {0.000, 0.000, 0.000, 1.000, 0.500, 0.333},
- {1.000, 1.000, 1.000, -1.000, 0.000, 0.000},
- {0.000, 0.500, 2.000, 0.000, -0.500, 0.000},
- {0.000, 1.000, 0.000, 0.000, 0.000, 0.000},
- {0.000, 0.000, 0.000, 0.000, 1.000, 0.000},
- };
- double[] adblB = new double[] {0.02, 0.026, 0., 0., 0., 0.};
- org.drip.numerical.common.NumberUtil.Print2DArray (
- "\tCOEFF",
- aadblA,
- false
- );
- /*
- * Solve the Linear System using Gaussian Elimination
- */
- LinearizationOutput lssGaussianElimination = LinearSystemSolver.SolveUsingGaussianElimination (
- aadblA,
- adblB
- );
- for (int i = 0; i < lssGaussianElimination.getTransformedRHS().length; ++i)
- System.out.println ("GaussianElimination[" + i + "] = " + FormatUtil.FormatDouble
- (lssGaussianElimination.getTransformedRHS()[i], 0, 6, 1.));
- for (int i = 0; i < 6; ++i) {
- double dblRHS = 0.;
- for (int j = 0; j < 6; ++j)
- dblRHS += aadblA[i][j] * lssGaussianElimination.getTransformedRHS()[j];
- System.out.println ("RHS[" + i + "]: " + dblRHS);
- }
- /*
- * Solve the Linear System using the Gauss-Seidel method
- */
- /* LinearSystemSolution lssGaussSeidel = LinearSystemSolver.SolveUsingGaussSeidel (aadblA, adblB);
- for (int i = 0; i < lssGaussSeidel.getSolution().length; ++i)
- System.out.println ("GaussSeidel[" + i + "] = " + FormatUtil.FormatDouble (lssGaussSeidel.getSolution()[i], 0, 2, 1.)); */
- }
- public static final void main (
- final String[] astrArgs)
- {
- EnvManager.InitEnv ("");
- MatrixManipulation();
- LinearSystemSolver();
- EnvManager.TerminateEnv();
- }
- }