PrincipalComponent.java
package org.drip.sample.matrix;
import org.drip.numerical.common.FormatUtil;
import org.drip.numerical.eigen.*;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, valuation adjustment, and portfolio construction within and across fixed income,
* credit, commodity, equity, FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning
* - Numerical Optimizer
* - Spline Builder
* - Algorithm Support
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>PrincipalComponent</i> demonstrates how to generate the Principal eigenvalue and eigenvector for the
* Input Matrix.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalSupportLibrary.md">Numerical Support Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/matrix/README.md">Linear Algebra and Matrix Utilities</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class PrincipalComponent {
private static final void PrincipalComponentRun (
final PowerIterationComponentExtractor pice)
throws Exception
{
double dblCorr1 = 0.5 * Math.random();
double dblCorr2 = 0.5 * Math.random();
double[][] aadblA = {
{ 1.0, dblCorr1, 0.0},
{dblCorr1, 1.0, dblCorr2},
{ 0.0, dblCorr2, 1.0}
};
EigenComponent ec = pice.principalComponent (aadblA);
double[] adblEigenvector = ec.eigenVector();
java.lang.String strDump = "[" + FormatUtil.FormatDouble (ec.eigenValue(), 1, 4, 1.) + "] => ";
for (int i = 0; i < adblEigenvector.length; ++i)
strDump += FormatUtil.FormatDouble (adblEigenvector[i], 1, 4, 1.) + " | ";
System.out.println (
"\t{" +
FormatUtil.FormatDouble (dblCorr1, 1, 4, 1.) + " ||" +
FormatUtil.FormatDouble (dblCorr2, 1, 4, 1.) + "} => " + strDump
);
}
public static final void main (
final String[] astrArg)
throws Exception
{
EnvManager.InitEnv ("");
PowerIterationComponentExtractor pice = new PowerIterationComponentExtractor (
50,
0.000001,
false
);
for (int i = 0; i < 50; ++i)
PrincipalComponentRun (pice);
EnvManager.TerminateEnv();
}
}