RayleighQuotient.java
- package org.drip.sample.matrix;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.numerical.common.NumberUtil;
- import org.drip.numerical.linearalgebra.Matrix;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, valuation adjustment, and portfolio construction within and across fixed income,
- * credit, commodity, equity, FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning
- * - Numerical Optimizer
- * - Spline Builder
- * - Algorithm Support
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>RayleighQuotient</i> demonstrates the Computation of an Approximate to the Eigenvalue using the
- * Rayleigh Quotient. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Wikipedia - Power Iteration (2018): https://en.wikipedia.org/wiki/Power_iteration
- * </li>
- * <li>
- * Wikipedia - Rayleigh Quotient Iteration (2018):
- * https://en.wikipedia.org/wiki/Rayleigh_quotient_iteration
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalSupportLibrary.md">Numerical Support Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/matrix/README.md">Linear Algebra and Matrix Utilities</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class RayleighQuotient
- {
- private static final void EigenDump (
- final int iteration,
- final double[] eigenvector,
- final double eigenvalue)
- throws Exception
- {
- java.lang.String strDump = "\t|| Iteration => " + FormatUtil.FormatDouble (iteration, 2, 0, 1.) +
- "[" + FormatUtil.FormatDouble (eigenvalue, 3, 4, 1.) + "] => ";
- for (int i = 0; i < eigenvector.length; ++i)
- strDump += FormatUtil.FormatDouble (eigenvector[i], 1, 4, 1.) + " | ";
- System.out.println ("\t" + strDump);
- }
- public static final void main (
- final String[] argumentArray)
- throws Exception
- {
- EnvManager.InitEnv ("");
- int iterationCount = 5;
- double eigenvalue = 200.;
- double[][] a = {
- {1., 2., 3.},
- {1., 2., 1.},
- {3., 2., 1.},
- };
- double[] eigenvector = {
- 1. / Math.sqrt (3.),
- 1. / Math.sqrt (3.),
- 1. / Math.sqrt (3.)
- };
- NumberUtil.PrintMatrix (
- "\t|| A ",
- a
- );
- EigenDump (
- 0,
- eigenvector,
- eigenvalue
- );
- int iterationIndex = 0;
- while (++iterationIndex < iterationCount)
- {
- double[][] deDiagonalized = new double[a.length][a.length];
- for (int row = 0; row < a.length; ++row)
- {
- for (int column = 0; column < a.length; ++column)
- {
- deDiagonalized[row][column] = a[row][column];
- if (row == column)
- {
- deDiagonalized[row][column] -= eigenvalue;
- }
- }
- }
- eigenvector = Matrix.Normalize (
- Matrix.Product (
- Matrix.InvertUsingGaussianElimination (deDiagonalized),
- eigenvector
- )
- );
- eigenvalue = Matrix.DotProduct (
- eigenvector,
- Matrix.Product (
- a,
- eigenvector
- )
- );
- EigenDump (
- iterationIndex,
- eigenvector,
- eigenvalue
- );
- }
- EnvManager.TerminateEnv();
- }
- }