RayleighQuotient.java
package org.drip.sample.matrix;
import org.drip.numerical.common.FormatUtil;
import org.drip.numerical.common.NumberUtil;
import org.drip.numerical.linearalgebra.Matrix;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, valuation adjustment, and portfolio construction within and across fixed income,
* credit, commodity, equity, FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning
* - Numerical Optimizer
* - Spline Builder
* - Algorithm Support
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>RayleighQuotient</i> demonstrates the Computation of an Approximate to the Eigenvalue using the
* Rayleigh Quotient. The References are:
*
* <br><br>
* <ul>
* <li>
* Wikipedia - Power Iteration (2018): https://en.wikipedia.org/wiki/Power_iteration
* </li>
* <li>
* Wikipedia - Rayleigh Quotient Iteration (2018):
* https://en.wikipedia.org/wiki/Rayleigh_quotient_iteration
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalSupportLibrary.md">Numerical Support Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/README.md">Sample</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/matrix/README.md">Linear Algebra and Matrix Utilities</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class RayleighQuotient
{
private static final void EigenDump (
final int iteration,
final double[] eigenvector,
final double eigenvalue)
throws Exception
{
java.lang.String strDump = "\t|| Iteration => " + FormatUtil.FormatDouble (iteration, 2, 0, 1.) +
"[" + FormatUtil.FormatDouble (eigenvalue, 3, 4, 1.) + "] => ";
for (int i = 0; i < eigenvector.length; ++i)
strDump += FormatUtil.FormatDouble (eigenvector[i], 1, 4, 1.) + " | ";
System.out.println ("\t" + strDump);
}
public static final void main (
final String[] argumentArray)
throws Exception
{
EnvManager.InitEnv ("");
int iterationCount = 5;
double eigenvalue = 200.;
double[][] a = {
{1., 2., 3.},
{1., 2., 1.},
{3., 2., 1.},
};
double[] eigenvector = {
1. / Math.sqrt (3.),
1. / Math.sqrt (3.),
1. / Math.sqrt (3.)
};
NumberUtil.PrintMatrix (
"\t|| A ",
a
);
EigenDump (
0,
eigenvector,
eigenvalue
);
int iterationIndex = 0;
while (++iterationIndex < iterationCount)
{
double[][] deDiagonalized = new double[a.length][a.length];
for (int row = 0; row < a.length; ++row)
{
for (int column = 0; column < a.length; ++column)
{
deDiagonalized[row][column] = a[row][column];
if (row == column)
{
deDiagonalized[row][column] -= eigenvalue;
}
}
}
eigenvector = Matrix.Normalize (
Matrix.Product (
Matrix.InvertUsingGaussianElimination (deDiagonalized),
eigenvector
)
);
eigenvalue = Matrix.DotProduct (
eigenvector,
Matrix.Product (
a,
eigenvector
)
);
EigenDump (
iterationIndex,
eigenvector,
eigenvalue
);
}
EnvManager.TerminateEnv();
}
}