VariateSumExtremization.java
package org.drip.sample.optimizer;
import org.drip.function.definition.RdToR1;
import org.drip.function.rdtor1.LagrangianMultivariate;
import org.drip.function.rdtor1descent.LineStepEvolutionControl;
import org.drip.function.rdtor1solver.*;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/laksh
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* VariateSumExtremization computes the Equality Constrained Extrema of the Sum of Variates along the Surface
* of the Sphere using Lagrange Multipliers.
*
* @author Lakshmi Krishnamurthy
*/
public class VariateSumExtremization
{
public static final void main (
final String[] argumentArray)
throws Exception
{
EnvManager.InitEnv (
""
);
RdToR1 variateSumObjectiveFunction = new RdToR1 (
null
)
{
@Override public double evaluate (
final double[] variateArray)
throws Exception
{
return variateArray[0] + variateArray[1];
}
@Override public int dimension()
{
return 2;
}
@Override public double[] jacobian (
final double[] variateArray)
{
double[] jacobian = new double[2];
jacobian[0] = 1.;
jacobian[1] = 1.;
return jacobian;
}
@Override public double[][] hessian (
final double[] variateArray)
{
double[][] hessian = new double[2][2];
hessian[0][0] = 0.;
hessian[0][1] = 0.;
hessian[1][0] = 0.;
hessian[1][1] = 0.;
return hessian;
}
};
RdToR1 rdToR1SphereSurfaceConstraintFunction = new RdToR1 (
null
)
{
@Override public double evaluate (
final double[] variateArray)
throws Exception
{
return variateArray[0] * variateArray[0] + variateArray[1] * variateArray[1] - 1.;
}
@Override public int dimension()
{
return 2;
}
@Override public double[] jacobian (
final double[] variateArray)
{
double[] jacobian = new double[2];
jacobian[0] = 2. * variateArray[0];
jacobian[1] = 2. * variateArray[1];
return jacobian;
}
@Override public double[][] hessian (
final double[] variateArray)
{
double[][] hessian = new double[2][2];
hessian[0][0] = 2.;
hessian[0][1] = 0.;
hessian[1][0] = 0.;
hessian[1][1] = 2.;
return hessian;
}
};
VariateInequalityConstraintMultiplier vcmt = new NewtonFixedPointFinder (
new LagrangianMultivariate (
variateSumObjectiveFunction,
new RdToR1[]
{
rdToR1SphereSurfaceConstraintFunction
}
),
LineStepEvolutionControl.NocedalWrightStrongWolfe (
false
),
ConvergenceControl.Standard()
).convergeVariate (
new VariateInequalityConstraintMultiplier (
false,
new double[]
{
1.,
1.,
1.
},
null
)
);
double[] variateArray = vcmt.variateArray();
System.out.println ("\tOptimal X : " + FormatUtil.FormatDouble (variateArray[0], 1, 4, 1.));
System.out.println ("\tOptimal Y : " + FormatUtil.FormatDouble (variateArray[1], 1, 4, 1.));
System.out.println ("\tOptimal Lambda : " + FormatUtil.FormatDouble (variateArray[2], 1, 4, 1.));
}
}