LocalVolatilityRegressor.java
- package org.drip.sample.pykhtin2009;
- import org.drip.exposure.regression.LocalVolatilityGenerationControl;
- import org.drip.exposure.regression.PykhtinPillar;
- import org.drip.exposure.regression.PykhtinPillarDynamics;
- import org.drip.function.definition.R1ToR1;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * LocalVolatilityRegressor is a Demonstration of the Exposure Regression Local Volatility Methodology of
- * Pykhtin (2009). The References are:
- *
- * - Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Re-thinking Margin Period of Risk,
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2902737, eSSRN.
- *
- * - Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial Margin,
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156, eSSRN.
- *
- * - Albanese, C., and L. Andersen (2014): Accounting for OTC Derivatives: Funding Adjustments and the
- * Re-Hypothecation Option, eSSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2482955.
- *
- * - Burgard, C., and M. Kjaer (2017): Derivatives Funding, Netting, and Accounting, eSSRN,
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2534011.
- *
- * - Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing, Risk
- * 21 (2) 97-102.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LocalVolatilityRegressor
- {
- public static final void main (
- final String[] args)
- throws Exception
- {
- EnvManager.InitEnv ("");
- int exposureCount = 1000;
- double exposureLow = 70.;
- double exposureHigh = 130.;
- double[] exposureArray = new double[exposureCount];
- LocalVolatilityGenerationControl localVolatilityGenerationControl =
- LocalVolatilityGenerationControl.Standard (exposureCount);
- for (int exposureIndex = 0; exposureIndex < exposureCount; ++exposureIndex)
- {
- exposureArray[exposureIndex] = exposureLow + (exposureHigh - exposureLow) * Math.random();
- }
- PykhtinPillarDynamics vertexRealization = PykhtinPillarDynamics.Standard (exposureArray);
- PykhtinPillar[] pillarVertexArray = vertexRealization.pillarVertexArray
- (localVolatilityGenerationControl);
- R1ToR1 localVolatilityR1ToR1 = vertexRealization.localVolatilityR1ToR1 (
- localVolatilityGenerationControl,
- pillarVertexArray
- );
- System.out.println ("\t||-----------------------------------------------------||");
- System.out.println ("\t|| Pykhtin (2009) Terminal Brownian Bridge ||");
- System.out.println ("\t||-----------------------------------------------------||");
- System.out.println ("\t|| ||");
- System.out.println ("\t|| L -> R: ||");
- System.out.println ("\t|| ||");
- System.out.println ("\t|| Terminal Numeraire ||");
- System.out.println ("\t|| Ranking Ordinal ||");
- System.out.println ("\t|| Uniform CDF ||");
- System.out.println ("\t|| Gaussian Predictor Variate ||");
- System.out.println ("\t|| Local Volatility Estimate ||");
- System.out.println ("\t||-----------------------------------------------------||");
- for (PykhtinPillar pillarVertex : pillarVertexArray)
- {
- double exposure = pillarVertex.exposure();
- System.out.println (
- "\t|| " +
- FormatUtil.FormatDouble (exposure, 3, 2, 1.) + " | " +
- FormatUtil.FormatDouble (pillarVertex.order(), 3, 0, 1.) + " | " +
- FormatUtil.FormatDouble (pillarVertex.cdf(), 1, 3, 1.) + " | " +
- FormatUtil.FormatDouble (pillarVertex.variate(), 1, 4, 1.) + " | " +
- FormatUtil.FormatDouble (pillarVertex.localVolatility(), 2, 2, 1.) + " | " +
- FormatUtil.FormatDouble (localVolatilityR1ToR1.evaluate (exposure), 2, 2, 1.) + " ||"
- );
- }
- System.out.println ("\t||-----------------------------------------------------||");
- EnvManager.TerminateEnv();
- }
- }