LocalVolatilityRegressor.java
package org.drip.sample.pykhtin2009;
import org.drip.exposure.regression.LocalVolatilityGenerationControl;
import org.drip.exposure.regression.PykhtinPillar;
import org.drip.exposure.regression.PykhtinPillarDynamics;
import org.drip.function.definition.R1ToR1;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* LocalVolatilityRegressor is a Demonstration of the Exposure Regression Local Volatility Methodology of
* Pykhtin (2009). The References are:
*
* - Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Re-thinking Margin Period of Risk,
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2902737, eSSRN.
*
* - Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial Margin,
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156, eSSRN.
*
* - Albanese, C., and L. Andersen (2014): Accounting for OTC Derivatives: Funding Adjustments and the
* Re-Hypothecation Option, eSSRN, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2482955.
*
* - Burgard, C., and M. Kjaer (2017): Derivatives Funding, Netting, and Accounting, eSSRN,
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2534011.
*
* - Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing, Risk
* 21 (2) 97-102.
*
* @author Lakshmi Krishnamurthy
*/
public class LocalVolatilityRegressor
{
public static final void main (
final String[] args)
throws Exception
{
EnvManager.InitEnv ("");
int exposureCount = 1000;
double exposureLow = 70.;
double exposureHigh = 130.;
double[] exposureArray = new double[exposureCount];
LocalVolatilityGenerationControl localVolatilityGenerationControl =
LocalVolatilityGenerationControl.Standard (exposureCount);
for (int exposureIndex = 0; exposureIndex < exposureCount; ++exposureIndex)
{
exposureArray[exposureIndex] = exposureLow + (exposureHigh - exposureLow) * Math.random();
}
PykhtinPillarDynamics vertexRealization = PykhtinPillarDynamics.Standard (exposureArray);
PykhtinPillar[] pillarVertexArray = vertexRealization.pillarVertexArray
(localVolatilityGenerationControl);
R1ToR1 localVolatilityR1ToR1 = vertexRealization.localVolatilityR1ToR1 (
localVolatilityGenerationControl,
pillarVertexArray
);
System.out.println ("\t||-----------------------------------------------------||");
System.out.println ("\t|| Pykhtin (2009) Terminal Brownian Bridge ||");
System.out.println ("\t||-----------------------------------------------------||");
System.out.println ("\t|| ||");
System.out.println ("\t|| L -> R: ||");
System.out.println ("\t|| ||");
System.out.println ("\t|| Terminal Numeraire ||");
System.out.println ("\t|| Ranking Ordinal ||");
System.out.println ("\t|| Uniform CDF ||");
System.out.println ("\t|| Gaussian Predictor Variate ||");
System.out.println ("\t|| Local Volatility Estimate ||");
System.out.println ("\t||-----------------------------------------------------||");
for (PykhtinPillar pillarVertex : pillarVertexArray)
{
double exposure = pillarVertex.exposure();
System.out.println (
"\t|| " +
FormatUtil.FormatDouble (exposure, 3, 2, 1.) + " | " +
FormatUtil.FormatDouble (pillarVertex.order(), 3, 0, 1.) + " | " +
FormatUtil.FormatDouble (pillarVertex.cdf(), 1, 3, 1.) + " | " +
FormatUtil.FormatDouble (pillarVertex.variate(), 1, 4, 1.) + " | " +
FormatUtil.FormatDouble (pillarVertex.localVolatility(), 2, 2, 1.) + " | " +
FormatUtil.FormatDouble (localVolatilityR1ToR1.evaluate (exposure), 2, 2, 1.) + " ||"
);
}
System.out.println ("\t||-----------------------------------------------------||");
EnvManager.TerminateEnv();
}
}