InverseChiSquared.java
package org.drip.sample.randomdiscrete;
import org.drip.measure.discrete.SequenceGenerator;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
* FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three main modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning Library
* - Numerical Optimizer Library
* - Machine Learning Library
* - Spline Builder Library
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>InverseChiSquared</i> demonstrates Generation of Inverse Chi-Squared R<sup>1</sup> Random Numbers with
* different Degrees of Freedom.
*
* <br><br>
* <ul>
* <li>
* Backstrom, T., and J. Fischer (2018): Fast Randomization for Distributed Low Bit-rate Coding of
* Speech and Audio <i>IEEE/ACM Transactions on Audio, Speech, and Language Processing</i> <b>26
* (1)</b> 19-30
* </li>
* <li>
* Chi-Squared Distribution (2019): Chi-Squared Function
* https://en.wikipedia.org/wiki/Chi-squared_distribution
* </li>
* <li>
* Johnson, N. L., S. Klotz, and N. Balakrishnan (1994): <i>Continuous Univariate Distributions
* <b>1</b> 2<sup>nd</sup> Edition</i> <b>John Wiley and Sons</b>
* </li>
* <li>
* Lancaster, H, O. (1969): <i>The Chi-Squared Distribution</i> <b>Wiley</b>
* </li>
* <li>
* Pillai, N. S. (1026): An Unexpected Encounter with Cauchy and Levy <i>Annals of Statistics</i>
* <b>44 (5)</b> 2089-2097
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalOptimizerLibrary.md">Numerical Optimizer Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure">Measure</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/measure/discrete">Discrete</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class InverseChiSquared
{
private static final void DisplayStream (
final int degreesOfFreedom)
throws Exception
{
double[] randomArray = SequenceGenerator.InverseChiSquared (
200,
degreesOfFreedom
);
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println ("\t| Degrees of Freedom => " + degreesOfFreedom);
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
for (int row = 0; row < 20; ++row)
{
String rowDump = "\t|";
for (int column = 0; column < 10; ++column)
{
rowDump = rowDump + FormatUtil.FormatDouble (
randomArray[row * 10 + column], 1, 5, 1.
) + " |";
}
System.out.println (rowDump + "|");
}
System.out.println ("\t|---------------------------------------------------------------------------------------------------||");
System.out.println();
}
public static final void main (
final String[] argumentArray)
throws Exception
{
EnvManager.InitEnv ("");
DisplayStream (2);
DisplayStream (5);
DisplayStream (10);
EnvManager.TerminateEnv();
}
}