StandardExponentialTStatistic.java
- package org.drip.sample.samplestatistics;
- import org.drip.measure.continuous.R1UnivariateExponential;
- import org.drip.measure.statistics.PopulationCentralMeasures;
- import org.drip.measure.statistics.UnivariateMoments;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.numerical.common.StringUtil;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>StandardExponentialTStatistic</i> illustrates the Computation of the t-statistic, z-score, and other
- * related Metrics of the Sample/Population Mean for an Empirical Standard Exponential Distribution.
- *
- * <br><br>
- * <ul>
- * <li>
- * Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
- * Back-testing Credit Exposure Models
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
- * </li>
- * <li>
- * Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
- * Applications to Financial Risk Management, International Economic Review 39 (4) 863-883
- * </li>
- * <li>
- * Wikipedia (2018): Probability Integral Transform
- * https://en.wikipedia.org/wiki/Probability_integral_transform
- * </li>
- * <li>
- * Wikipedia (2018): t-statistic https://en.wikipedia.org/wiki/T-statistic
- * </li>
- * <li>
- * Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/AnalyticsCore.md">Analytics Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample">Sample</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sample/hypothesistest">Statistical Hypothesis Tests</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class StandardExponentialTStatistic
- {
- private static final double UnivariateRandom()
- throws Exception
- {
- return R1UnivariateExponential.Standard().random();
- }
- private static final PopulationCentralMeasures PopulationMeasures()
- {
- return R1UnivariateExponential.Standard().populationCentralMeasures();
- }
- private static final double SampleMeanEstimate (
- final int count)
- throws Exception
- {
- double[] univariateRandomArray = new double[count];
- for (int index = 0; index < count; ++index)
- {
- univariateRandomArray[index] = UnivariateRandom();
- }
- return UnivariateMoments.Standard (
- StringUtil.GUID(),
- univariateRandomArray,
- null
- ).mean();
- }
- private static final UnivariateMoments SampleStatistics (
- final int drawCount,
- final int sampleCount)
- throws Exception
- {
- double[] sampleMeanEstimateArray = new double[sampleCount];
- for (int sampleIndex = 0; sampleIndex < sampleCount; ++sampleIndex)
- {
- sampleMeanEstimateArray[sampleIndex] = SampleMeanEstimate (drawCount);
- }
- return UnivariateMoments.Standard (
- StringUtil.GUID(),
- sampleMeanEstimateArray,
- null
- );
- }
- public static final void main (
- final String[] argumentArray)
- throws Exception
- {
- EnvManager.InitEnv ("");
- int drawCount = 10000;
- int sampleCount = 200;
- UnivariateMoments sampleStatistics = SampleStatistics (
- drawCount,
- sampleCount
- );
- PopulationCentralMeasures populationCentralMeasures = PopulationMeasures();
- double nextDraw = UnivariateRandom();
- double updatedMean = (sampleStatistics.mean() * sampleCount + nextDraw) / (sampleCount + 1);
- System.out.println ("\t|--------------------------------------------------||");
- System.out.println ("\t| STANDARD UNIFORM DISTRIBUTION ||");
- System.out.println ("\t|--------------------------------------------------||");
- System.out.println (
- "\t| Population Mean => " +
- FormatUtil.FormatDouble (populationCentralMeasures.mean(), 1, 8, 1.)
- );
- System.out.println (
- "\t| Population Variance => " +
- FormatUtil.FormatDouble (populationCentralMeasures.variance(), 1, 8, 1.)
- );
- System.out.println ("\t|--------------------------------------------------||");
- System.out.println (
- "\t| Mean => " +
- FormatUtil.FormatDouble (sampleStatistics.mean(), 1, 8, 1.)
- );
- System.out.println (
- "\t| Variance => " +
- FormatUtil.FormatDouble (sampleStatistics.variance(), 1, 8, 1.)
- );
- System.out.println (
- "\t| Sample Count => " +
- FormatUtil.FormatDouble (sampleStatistics.numSample(), 3, 0, 1.)
- );
- System.out.println (
- "\t| Degrees Of Freedom => " +
- FormatUtil.FormatDouble (sampleStatistics.degreesOfFreedom(), 3, 0, 1.)
- );
- System.out.println (
- "\t| Standard Deviation => " +
- FormatUtil.FormatDouble (sampleStatistics.stdDev(), 1, 8, 1.)
- );
- System.out.println (
- "\t| Standard Error => " +
- FormatUtil.FormatDouble (sampleStatistics.stdError(), 1, 8, 1.)
- );
- System.out.println (
- "\t| Predictive Confidence Interval => " +
- FormatUtil.FormatDouble (sampleStatistics.predictiveConfidenceLevel(), 1, 8, 1.)
- );
- System.out.println ("\t|--------------------------------------------------||");
- System.out.println (
- "\t| Next Draw => " +
- FormatUtil.FormatDouble (nextDraw, 1, 8, 1.)
- );
- System.out.println (
- "\t| Next Draw T-Statistics => " +
- FormatUtil.FormatDouble (sampleStatistics.tStatistic (updatedMean), 1, 8, 1.)
- );
- System.out.println (
- "\t| Standard Error Offset => " +
- FormatUtil.FormatDouble (sampleStatistics.standardErrorOffset (nextDraw), 1, 0, 1.)
- );
- System.out.println (
- "\t| Population Z-Score => " +
- FormatUtil.FormatDouble (populationCentralMeasures.zScore (nextDraw), 1, 8, 1.)
- );
- System.out.println ("\t|--------------------------------------------------||");
- EnvManager.TerminateEnv();
- }
- }