DualConstrainedEllipsoidVariance.java
- package org.drip.sample.semidefinite;
- import org.drip.function.definition.RdToR1;
- import org.drip.function.rdtor1.*;
- import org.drip.function.rdtor1descent.LineStepEvolutionControl;
- import org.drip.function.rdtor1solver.*;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * DualConstrainedEllipsoidVariance demonstrates the Application of the Interior Point Method for Minimizing
- * the Variance Across The Specified Ellipsoid under both Normalization and first Moment Constraints.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class DualConstrainedEllipsoidVariance
- {
- public static final void main (
- final String[] argumentArray)
- throws Exception
- {
- EnvManager.InitEnv ("");
- String[] entityNameArray = new String[]
- {
- "IBM",
- "ATT",
- "ALU",
- "QCO",
- "INT",
- "MSF",
- "VER"
- };
- double[] entityReturnsArray = new double[]
- {
- 0.0264,
- 0.0332,
- 0.0400,
- 0.0468,
- 0.0536,
- 0.0604,
- 0.0672
- };
- double entityDesignReturn = 0.0468;
- double[][] entityCovarianceMatrix = new double[][]
- {
- {1.00, 0.76, 0.80, 0.38, 0.60, 0.61, 0.51},
- {0.76, 1.00, 0.65, 0.35, 0.56, 0.43, 0.40},
- {0.80, 0.65, 1.00, 0.68, 0.74, 0.40, 0.51},
- {0.38, 0.35, 0.68, 1.00, 0.72, 0.02, 0.57},
- {0.60, 0.56, 0.74, 0.72, 1.00, 0.31, 0.67},
- {0.61, 0.43, 0.40, 0.02, 0.31, 1.00, 0.39},
- {0.51, 0.40, 0.51, 0.57, 0.67, 0.39, 1.00}
- };
- InteriorPointBarrierControl interiorPointBarrierControl = InteriorPointBarrierControl.Standard();
- System.out.println ("\n\n\t|------------------------------------------------------||");
- String header = "\t| |";
- for (int entityIndex = 0;
- entityIndex < entityNameArray.length;
- ++entityIndex)
- {
- header += " " + entityNameArray[entityIndex] + " |";
- }
- System.out.println (header + "|");
- System.out.println ("\t|------------------------------------------------------||");
- for (int entityIndexI = 0;
- entityIndexI < entityNameArray.length;
- ++entityIndexI)
- {
- String dump = "\t| " + entityNameArray[entityIndexI] + " ";
- for (int entityIndexJ = 0;
- entityIndexJ < entityNameArray.length;
- ++entityIndexJ)
- {
- dump += "|" + FormatUtil.FormatDouble (
- entityCovarianceMatrix[entityIndexI][entityIndexJ], 1, 2, 1.
- ) + " ";
- }
- System.out.println (dump + "||");
- }
- System.out.println ("\t|------------------------------------------------------||\n\n");
- double equalityConstraintConstant = -1.;
- int entityCount = entityCovarianceMatrix.length;
- RdToR1[] equalityConstraintFunctionArray = new RdToR1[]
- {
- new AffineMultivariate (
- ObjectiveConstraintVariateSet.Unitary (
- entityCount
- ),
- equalityConstraintConstant
- ),
- new AffineMultivariate (
- entityReturnsArray,
- -1. * entityDesignReturn
- )
- };
- int equalityConstraintCount = equalityConstraintFunctionArray.length;
- LagrangianMultivariate lagrangianMultivariate = new LagrangianMultivariate (
- new CovarianceEllipsoidMultivariate (
- entityCovarianceMatrix
- ),
- equalityConstraintFunctionArray
- );
- double[] optimalVariateArray = new BarrierFixedPointFinder (
- lagrangianMultivariate,
- new RdToR1[]
- {
- new AffineBoundMultivariate (
- false,
- 0,
- entityCount + equalityConstraintCount,
- 0.05
- ),
- new AffineBoundMultivariate (
- true,
- 0,
- entityCount + equalityConstraintCount,
- 0.65
- ),
- new AffineBoundMultivariate (false, 1, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 1, entityCount + equalityConstraintCount, 0.65),
- new AffineBoundMultivariate (false, 2, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 2, entityCount + equalityConstraintCount, 0.65),
- new AffineBoundMultivariate (false, 3, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 3, entityCount + equalityConstraintCount, 0.65),
- new AffineBoundMultivariate (false, 4, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 4, entityCount + equalityConstraintCount, 0.65),
- new AffineBoundMultivariate (false, 5, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 5, entityCount + equalityConstraintCount, 0.65),
- new AffineBoundMultivariate (false, 6, entityCount + equalityConstraintCount, 0.05),
- new AffineBoundMultivariate (true, 6, entityCount + equalityConstraintCount, 0.65)
- },
- interiorPointBarrierControl,
- LineStepEvolutionControl.NocedalWrightStrongWolfe (
- false
- )
- ).solve (
- ObjectiveConstraintVariateSet.Uniform (
- entityCount,
- lagrangianMultivariate.constraintFunctionDimension()
- )
- ).variateArray();
- System.out.println ("\t|----------------------||");
- System.out.println ("\t| OPTIMAL ENTITIES ||");
- System.out.println ("\t|----------------------||");
- double expectedReturn = 0.;
- for (int entityIndex = 0;
- entityIndex < entityCount;
- ++entityIndex)
- {
- System.out.println (
- "\t| " + entityNameArray[entityIndex] + " => " + FormatUtil.FormatDouble (
- optimalVariateArray[entityIndex], 2, 2, 100.
- ) + "% ||"
- );
- expectedReturn += optimalVariateArray[entityIndex] * entityReturnsArray[entityIndex];
- }
- System.out.println ("\t|----------------------||\n");
- System.out.println ("\t|------------------------------||");
- System.out.println (
- "\t| DESIGN RETURN => " + FormatUtil.FormatDouble (
- entityDesignReturn, 1, 5, 1.
- ) + " ||"
- );
- System.out.println (
- "\t| EXPECTED RETURN => " + FormatUtil.FormatDouble (
- expectedReturn, 1, 5, 1.
- ) + " ||"
- );
- System.out.println (
- "\t| OPTIMAL VARIANCE => " + FormatUtil.FormatDouble (
- lagrangianMultivariate.evaluate (
- optimalVariateArray
- ), 1, 5, 1.
- ) + " ||"
- );
- System.out.println ("\t|------------------------------||\n");
- }
- }