TwoVariateConstrainedVariance.java
- package org.drip.sample.semidefinite;
- import org.drip.function.definition.RdToR1;
- import org.drip.function.rdtor1.*;
- import org.drip.function.rdtor1descent.LineStepEvolutionControl;
- import org.drip.function.rdtor1solver.*;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * TwoVariateConstrainedVariance demonstrates the Application of the Interior Point Method for minimizing
- * the Variance Across Two Variates under the Normalization Constraint.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class TwoVariateConstrainedVariance
- {
- public static final void main (
- final String[] argumentArray)
- throws Exception
- {
- EnvManager.InitEnv (
- ""
- );
- double[][] covarianceMatrix = new double[][]
- {
- {0.09, 0.12},
- {0.12, 0.04}
- };
- double[] equalityConstraintRHSArray = new double[]
- {
- 1.,
- 1.
- };
- double equalityConstraintConstant = -1.;
- int objectiveDimension = covarianceMatrix.length;
- RdToR1[] equalityConstraintMultivariateFunctionArray = new AffineMultivariate[]
- {
- new AffineMultivariate (
- equalityConstraintRHSArray,
- equalityConstraintConstant
- )
- };
- int equalityConstraintCount = equalityConstraintMultivariateFunctionArray.length;
- AffineBoundMultivariate affineBoundMultivariateFunction1 = new AffineBoundMultivariate (
- true,
- 0,
- 2 + equalityConstraintCount,
- 0.65
- );
- AffineBoundMultivariate affineBoundMultivariateFunction2 = new AffineBoundMultivariate (
- true,
- 1,
- 2 + equalityConstraintCount,
- 0.65
- );
- AffineBoundMultivariate affineBoundMultivariateFunction3 = new AffineBoundMultivariate (
- false,
- 0,
- 2 + equalityConstraintCount,
- 0.15
- );
- AffineBoundMultivariate affineBoundMultivariateFunction4 = new AffineBoundMultivariate (
- false,
- 1,
- 2 + equalityConstraintCount,
- 0.15
- );
- RdToR1[] inequalityConstraintFunctionArray = new RdToR1[]
- {
- affineBoundMultivariateFunction1,
- affineBoundMultivariateFunction2,
- affineBoundMultivariateFunction3,
- affineBoundMultivariateFunction4
- };
- double barrierStrength = 1.;
- LagrangianMultivariate lagrangianMultivariate = new LagrangianMultivariate (
- new CovarianceEllipsoidMultivariate (
- covarianceMatrix
- ),
- equalityConstraintMultivariateFunctionArray
- );
- double[] startingVariateArray = ObjectiveConstraintVariateSet.Uniform (
- objectiveDimension,
- 1
- );
- VariateInequalityConstraintMultiplier variateInequalityConstraintMultiplier =
- new BarrierFixedPointFinder (
- lagrangianMultivariate,
- inequalityConstraintFunctionArray,
- InteriorPointBarrierControl.Standard(),
- LineStepEvolutionControl.NocedalWrightStrongWolfe (
- false
- )
- ).solve (
- startingVariateArray
- );
- System.out.println ("\n\n\t|----------------------------------------------------||");
- System.out.println (
- "\t| OPTIMAL VARIATES => " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.) +
- " | " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.) +
- " | " + FormatUtil.FormatDouble (lagrangianMultivariate.evaluate (variateInequalityConstraintMultiplier.variateArray()), 1, 5, 1.) + " ||"
- );
- System.out.println ("\t|----------------------------------------------------||\n\n");
- int stepDown = 20;
- double[] constraintMultiplierArray = new double[inequalityConstraintFunctionArray.length];
- for (int inequalityConstraintFunctionIndex = 0;
- inequalityConstraintFunctionIndex < inequalityConstraintFunctionArray.length;
- ++inequalityConstraintFunctionIndex)
- {
- constraintMultiplierArray[inequalityConstraintFunctionIndex] = barrierStrength /
- inequalityConstraintFunctionArray[inequalityConstraintFunctionIndex].evaluate (
- startingVariateArray
- );
- }
- variateInequalityConstraintMultiplier = new VariateInequalityConstraintMultiplier (
- false,
- startingVariateArray,
- constraintMultiplierArray
- );
- ConvergenceControl convergenceControl = new ConvergenceControl (
- ConvergenceControl.OBJECTIVE_FUNCTION_SEQUENCE_CONVERGENCE,
- 5.0e-02,
- 1.0e-06,
- 70
- );
- System.out.println ("\t|-------------------------------------------------||");
- System.out.println ("\t| BARRIER => VARIATES | VARIANCE ||");
- System.out.println ("\t|-------------------------------------------------||");
- while (--stepDown > 0)
- {
- variateInequalityConstraintMultiplier = new InteriorFixedPointFinder (
- lagrangianMultivariate,
- inequalityConstraintFunctionArray,
- LineStepEvolutionControl.NocedalWrightStrongWolfe (
- false
- ),
- convergenceControl,
- barrierStrength
- ).find (
- variateInequalityConstraintMultiplier
- );
- startingVariateArray = variateInequalityConstraintMultiplier.variateArray();
- System.out.println (
- "\t| " + FormatUtil.FormatDouble (barrierStrength, 1, 10, 1.) +
- " => " + FormatUtil.FormatDouble (
- variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.
- ) +
- " | " + FormatUtil.FormatDouble (
- variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.
- ) +
- " | " + FormatUtil.FormatDouble (
- lagrangianMultivariate.evaluate (
- variateInequalityConstraintMultiplier.variateArray()
- ), 1, 5, 1.
- ) + " ||"
- );
- barrierStrength *= 0.5;
- }
- System.out.println ("\t|-------------------------------------------------||\n\n");
- }
- }