TwoVariateConstrainedVariance.java

  1. package org.drip.sample.semidefinite;

  2. import org.drip.function.definition.RdToR1;
  3. import org.drip.function.rdtor1.*;
  4. import org.drip.function.rdtor1descent.LineStepEvolutionControl;
  5. import org.drip.function.rdtor1solver.*;
  6. import org.drip.numerical.common.FormatUtil;
  7. import org.drip.service.env.EnvManager;

  8. /*
  9.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  10.  */

  11. /*!
  12.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  13.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  14.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  15.  *
  16.  *  This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
  17.  *      libraries targeting analysts and developers
  18.  *      https://lakshmidrip.github.io/DRIP/
  19.  *  
  20.  *  DRIP is composed of four main libraries:
  21.  *  
  22.  *  - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
  23.  *  - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
  24.  *  - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
  25.  *  - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
  26.  *
  27.  *  - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
  28.  *      Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
  29.  *      Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
  30.  *      Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
  31.  *      Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
  32.  *
  33.  *  - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
  34.  *      Incorporator, Holdings Constraint, and Transaction Costs.
  35.  *
  36.  *  - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
  37.  *
  38.  *  - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
  39.  *
  40.  *  Licensed under the Apache License, Version 2.0 (the "License");
  41.  *      you may not use this file except in compliance with the License.
  42.  *  
  43.  *  You may obtain a copy of the License at
  44.  *      http://www.apache.org/licenses/LICENSE-2.0
  45.  *  
  46.  *  Unless required by applicable law or agreed to in writing, software
  47.  *      distributed under the License is distributed on an "AS IS" BASIS,
  48.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  49.  *  
  50.  *  See the License for the specific language governing permissions and
  51.  *      limitations under the License.
  52.  */

  53. /**
  54.  * TwoVariateConstrainedVariance demonstrates the Application of the Interior Point Method for minimizing
  55.  *  the Variance Across Two Variates under the Normalization Constraint.
  56.  *
  57.  * @author Lakshmi Krishnamurthy
  58.  */

  59. public class TwoVariateConstrainedVariance
  60. {

  61.     public static final void main (
  62.         final String[] argumentArray)
  63.         throws Exception
  64.     {
  65.         EnvManager.InitEnv (
  66.             ""
  67.         );

  68.         double[][] covarianceMatrix = new double[][]
  69.         {
  70.             {0.09, 0.12},
  71.             {0.12, 0.04}
  72.         };

  73.         double[] equalityConstraintRHSArray = new double[]
  74.         {
  75.             1.,
  76.             1.
  77.         };

  78.         double equalityConstraintConstant = -1.;
  79.         int objectiveDimension = covarianceMatrix.length;

  80.         RdToR1[] equalityConstraintMultivariateFunctionArray = new AffineMultivariate[]
  81.         {
  82.             new AffineMultivariate (
  83.                 equalityConstraintRHSArray,
  84.                 equalityConstraintConstant
  85.             )
  86.         };

  87.         int equalityConstraintCount = equalityConstraintMultivariateFunctionArray.length;

  88.         AffineBoundMultivariate affineBoundMultivariateFunction1 = new AffineBoundMultivariate (
  89.             true,
  90.             0,
  91.             2 + equalityConstraintCount,
  92.             0.65
  93.         );

  94.         AffineBoundMultivariate affineBoundMultivariateFunction2 = new AffineBoundMultivariate (
  95.             true,
  96.             1,
  97.             2 + equalityConstraintCount,
  98.             0.65
  99.         );

  100.         AffineBoundMultivariate affineBoundMultivariateFunction3 = new AffineBoundMultivariate (
  101.             false,
  102.             0,
  103.             2 + equalityConstraintCount,
  104.             0.15
  105.         );

  106.         AffineBoundMultivariate affineBoundMultivariateFunction4 = new AffineBoundMultivariate (
  107.             false,
  108.             1,
  109.             2 + equalityConstraintCount,
  110.             0.15
  111.         );

  112.         RdToR1[] inequalityConstraintFunctionArray = new RdToR1[]
  113.         {
  114.             affineBoundMultivariateFunction1,
  115.             affineBoundMultivariateFunction2,
  116.             affineBoundMultivariateFunction3,
  117.             affineBoundMultivariateFunction4
  118.         };

  119.         double barrierStrength = 1.;

  120.         LagrangianMultivariate lagrangianMultivariate = new LagrangianMultivariate (
  121.             new CovarianceEllipsoidMultivariate (
  122.                 covarianceMatrix
  123.             ),
  124.             equalityConstraintMultivariateFunctionArray
  125.         );

  126.         double[] startingVariateArray = ObjectiveConstraintVariateSet.Uniform (
  127.             objectiveDimension,
  128.             1
  129.         );

  130.         VariateInequalityConstraintMultiplier variateInequalityConstraintMultiplier =
  131.             new BarrierFixedPointFinder (
  132.                 lagrangianMultivariate,
  133.                 inequalityConstraintFunctionArray,
  134.                 InteriorPointBarrierControl.Standard(),
  135.                 LineStepEvolutionControl.NocedalWrightStrongWolfe (
  136.                     false
  137.                 )
  138.             ).solve (
  139.                 startingVariateArray
  140.             );

  141.         System.out.println ("\n\n\t|----------------------------------------------------||");

  142.         System.out.println (
  143.             "\t| OPTIMAL VARIATES => " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.) +
  144.             " | " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.) +
  145.             " | " + FormatUtil.FormatDouble (lagrangianMultivariate.evaluate (variateInequalityConstraintMultiplier.variateArray()), 1, 5, 1.) + " ||"
  146.         );

  147.         System.out.println ("\t|----------------------------------------------------||\n\n");

  148.         int stepDown = 20;

  149.         double[] constraintMultiplierArray = new double[inequalityConstraintFunctionArray.length];

  150.         for (int inequalityConstraintFunctionIndex = 0;
  151.             inequalityConstraintFunctionIndex < inequalityConstraintFunctionArray.length;
  152.             ++inequalityConstraintFunctionIndex)
  153.         {
  154.             constraintMultiplierArray[inequalityConstraintFunctionIndex] = barrierStrength /
  155.                 inequalityConstraintFunctionArray[inequalityConstraintFunctionIndex].evaluate (
  156.                     startingVariateArray
  157.                 );
  158.         }

  159.         variateInequalityConstraintMultiplier = new VariateInequalityConstraintMultiplier (
  160.             false,
  161.             startingVariateArray,
  162.             constraintMultiplierArray
  163.         );

  164.         ConvergenceControl convergenceControl = new ConvergenceControl (
  165.             ConvergenceControl.OBJECTIVE_FUNCTION_SEQUENCE_CONVERGENCE,
  166.             5.0e-02,
  167.             1.0e-06,
  168.             70
  169.         );

  170.         System.out.println ("\t|-------------------------------------------------||");

  171.         System.out.println ("\t|    BARRIER    =>      VARIATES       | VARIANCE ||");

  172.         System.out.println ("\t|-------------------------------------------------||");

  173.         while (--stepDown > 0)
  174.         {
  175.             variateInequalityConstraintMultiplier = new InteriorFixedPointFinder (
  176.                 lagrangianMultivariate,
  177.                 inequalityConstraintFunctionArray,
  178.                 LineStepEvolutionControl.NocedalWrightStrongWolfe (
  179.                     false
  180.                 ),
  181.                 convergenceControl,
  182.                 barrierStrength
  183.             ).find (
  184.                 variateInequalityConstraintMultiplier
  185.             );

  186.             startingVariateArray = variateInequalityConstraintMultiplier.variateArray();

  187.             System.out.println (
  188.                 "\t| " + FormatUtil.FormatDouble (barrierStrength, 1, 10, 1.) +
  189.                 " => " + FormatUtil.FormatDouble (
  190.                     variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.
  191.                 ) +
  192.                 " | " + FormatUtil.FormatDouble (
  193.                     variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.
  194.                 ) +
  195.                 " | " + FormatUtil.FormatDouble (
  196.                     lagrangianMultivariate.evaluate (
  197.                         variateInequalityConstraintMultiplier.variateArray()
  198.                     ), 1, 5, 1.
  199.                 ) + " ||"
  200.             );

  201.             barrierStrength *= 0.5;
  202.         }

  203.         System.out.println ("\t|-------------------------------------------------||\n\n");
  204.     }
  205. }