TwoVariateConstrainedVariance.java
package org.drip.sample.semidefinite;
import org.drip.function.definition.RdToR1;
import org.drip.function.rdtor1.*;
import org.drip.function.rdtor1descent.LineStepEvolutionControl;
import org.drip.function.rdtor1solver.*;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* TwoVariateConstrainedVariance demonstrates the Application of the Interior Point Method for minimizing
* the Variance Across Two Variates under the Normalization Constraint.
*
* @author Lakshmi Krishnamurthy
*/
public class TwoVariateConstrainedVariance
{
public static final void main (
final String[] argumentArray)
throws Exception
{
EnvManager.InitEnv (
""
);
double[][] covarianceMatrix = new double[][]
{
{0.09, 0.12},
{0.12, 0.04}
};
double[] equalityConstraintRHSArray = new double[]
{
1.,
1.
};
double equalityConstraintConstant = -1.;
int objectiveDimension = covarianceMatrix.length;
RdToR1[] equalityConstraintMultivariateFunctionArray = new AffineMultivariate[]
{
new AffineMultivariate (
equalityConstraintRHSArray,
equalityConstraintConstant
)
};
int equalityConstraintCount = equalityConstraintMultivariateFunctionArray.length;
AffineBoundMultivariate affineBoundMultivariateFunction1 = new AffineBoundMultivariate (
true,
0,
2 + equalityConstraintCount,
0.65
);
AffineBoundMultivariate affineBoundMultivariateFunction2 = new AffineBoundMultivariate (
true,
1,
2 + equalityConstraintCount,
0.65
);
AffineBoundMultivariate affineBoundMultivariateFunction3 = new AffineBoundMultivariate (
false,
0,
2 + equalityConstraintCount,
0.15
);
AffineBoundMultivariate affineBoundMultivariateFunction4 = new AffineBoundMultivariate (
false,
1,
2 + equalityConstraintCount,
0.15
);
RdToR1[] inequalityConstraintFunctionArray = new RdToR1[]
{
affineBoundMultivariateFunction1,
affineBoundMultivariateFunction2,
affineBoundMultivariateFunction3,
affineBoundMultivariateFunction4
};
double barrierStrength = 1.;
LagrangianMultivariate lagrangianMultivariate = new LagrangianMultivariate (
new CovarianceEllipsoidMultivariate (
covarianceMatrix
),
equalityConstraintMultivariateFunctionArray
);
double[] startingVariateArray = ObjectiveConstraintVariateSet.Uniform (
objectiveDimension,
1
);
VariateInequalityConstraintMultiplier variateInequalityConstraintMultiplier =
new BarrierFixedPointFinder (
lagrangianMultivariate,
inequalityConstraintFunctionArray,
InteriorPointBarrierControl.Standard(),
LineStepEvolutionControl.NocedalWrightStrongWolfe (
false
)
).solve (
startingVariateArray
);
System.out.println ("\n\n\t|----------------------------------------------------||");
System.out.println (
"\t| OPTIMAL VARIATES => " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.) +
" | " + FormatUtil.FormatDouble (variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.) +
" | " + FormatUtil.FormatDouble (lagrangianMultivariate.evaluate (variateInequalityConstraintMultiplier.variateArray()), 1, 5, 1.) + " ||"
);
System.out.println ("\t|----------------------------------------------------||\n\n");
int stepDown = 20;
double[] constraintMultiplierArray = new double[inequalityConstraintFunctionArray.length];
for (int inequalityConstraintFunctionIndex = 0;
inequalityConstraintFunctionIndex < inequalityConstraintFunctionArray.length;
++inequalityConstraintFunctionIndex)
{
constraintMultiplierArray[inequalityConstraintFunctionIndex] = barrierStrength /
inequalityConstraintFunctionArray[inequalityConstraintFunctionIndex].evaluate (
startingVariateArray
);
}
variateInequalityConstraintMultiplier = new VariateInequalityConstraintMultiplier (
false,
startingVariateArray,
constraintMultiplierArray
);
ConvergenceControl convergenceControl = new ConvergenceControl (
ConvergenceControl.OBJECTIVE_FUNCTION_SEQUENCE_CONVERGENCE,
5.0e-02,
1.0e-06,
70
);
System.out.println ("\t|-------------------------------------------------||");
System.out.println ("\t| BARRIER => VARIATES | VARIANCE ||");
System.out.println ("\t|-------------------------------------------------||");
while (--stepDown > 0)
{
variateInequalityConstraintMultiplier = new InteriorFixedPointFinder (
lagrangianMultivariate,
inequalityConstraintFunctionArray,
LineStepEvolutionControl.NocedalWrightStrongWolfe (
false
),
convergenceControl,
barrierStrength
).find (
variateInequalityConstraintMultiplier
);
startingVariateArray = variateInequalityConstraintMultiplier.variateArray();
System.out.println (
"\t| " + FormatUtil.FormatDouble (barrierStrength, 1, 10, 1.) +
" => " + FormatUtil.FormatDouble (
variateInequalityConstraintMultiplier.variateArray()[0], 1, 5, 1.
) +
" | " + FormatUtil.FormatDouble (
variateInequalityConstraintMultiplier.variateArray()[1], 1, 5, 1.
) +
" | " + FormatUtil.FormatDouble (
lagrangianMultivariate.evaluate (
variateInequalityConstraintMultiplier.variateArray()
), 1, 5, 1.
) + " ||"
);
barrierStrength *= 0.5;
}
System.out.println ("\t|-------------------------------------------------||\n\n");
}
}