IIDSequenceSumBound.java
- package org.drip.sample.sequence;
- import org.drip.measure.continuous.R1Univariate;
- import org.drip.measure.lebesgue.R1Uniform;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.sequence.metrics.*;
- import org.drip.sequence.random.*;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * IIDSequenceSumBound demonstrates the Computation of the Different Probabilistic Bounds for Sums of i.i.d.
- * Random Sequences.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IIDSequenceSumBound {
- private static final void Head (
- final String strHeader)
- {
- System.out.println();
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- System.out.println (strHeader);
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- System.out.println ("\t| SAMPLE || <- TOLERANCES -> |");
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- }
- private static final void WeakLawBounds (
- final UnivariateSequenceGenerator iidsg,
- final R1Univariate dist,
- final int[] aiSampleSize,
- final double[] adblTolerance)
- throws Exception
- {
- for (int iSampleSize : aiSampleSize) {
- SingleSequenceAgnosticMetrics ssamDist = iidsg.sequence (
- iSampleSize,
- dist
- );
- String strDump = "\t| " + FormatUtil.FormatDouble (iSampleSize, 8, 0, 1) + " => ";
- for (double dblTolerance : adblTolerance)
- strDump += FormatUtil.FormatDouble (ssamDist.weakLawAverageBounds (dblTolerance).upper(), 1, 9, 1.) + " | ";
- System.out.println (strDump);
- }
- }
- private static final void ChernoffHoeffdingBounds (
- final UnivariateSequenceGenerator iidsg,
- final R1Univariate dist,
- final double dblSupport,
- final int[] aiSampleSize,
- final double[] adblTolerance)
- throws Exception
- {
- for (int iSampleSize : aiSampleSize) {
- BoundedSequenceAgnosticMetrics ssamDist = (BoundedSequenceAgnosticMetrics) iidsg.sequence (
- iSampleSize,
- dist
- );
- String strDump = "\t| " + FormatUtil.FormatDouble (iSampleSize, 8, 0, 1) + " => ";
- for (double dblTolerance : adblTolerance)
- strDump += FormatUtil.FormatDouble (ssamDist.chernoffHoeffdingAverageBounds (dblTolerance).upper(), 1, 9, 1.) + " | ";
- System.out.println (strDump);
- }
- }
- private static final void BennettBounds (
- final UnivariateSequenceGenerator iidsg,
- final R1Univariate dist,
- final double dblSupport,
- final int[] aiSampleSize,
- final double[] adblTolerance)
- throws Exception
- {
- for (int iSampleSize : aiSampleSize) {
- BoundedSequenceAgnosticMetrics ssamDist = (BoundedSequenceAgnosticMetrics) iidsg.sequence (
- iSampleSize,
- dist
- );
- String strDump = "\t| " + FormatUtil.FormatDouble (iSampleSize, 8, 0, 1) + " => ";
- for (double dblTolerance : adblTolerance)
- strDump += FormatUtil.FormatDouble (ssamDist.bennettAverageBounds (dblTolerance).upper(), 1, 9, 1.) + " | ";
- System.out.println (strDump);
- }
- }
- private static final void BernsteinBounds (
- final UnivariateSequenceGenerator iidsg,
- final R1Univariate dist,
- final double dblSupport,
- final int[] aiSampleSize,
- final double[] adblTolerance)
- throws Exception
- {
- for (int iSampleSize : aiSampleSize) {
- BoundedSequenceAgnosticMetrics ssamDist = (BoundedSequenceAgnosticMetrics) iidsg.sequence (
- iSampleSize,
- dist
- );
- String strDump = "\t| " + FormatUtil.FormatDouble (iSampleSize, 8, 0, 1) + " => ";
- for (double dblTolerance : adblTolerance)
- strDump += FormatUtil.FormatDouble (ssamDist.bernsteinAverageBounds (dblTolerance).upper(), 1, 9, 1.) + " | ";
- System.out.println (strDump);
- }
- }
- public static void main (
- final String[] args)
- throws Exception
- {
- EnvManager.InitEnv ("");
- BoundedUniform uniformRandom = new BoundedUniform (
- 0.,
- 1.
- );
- R1Uniform uniformDistribution = new R1Uniform (
- 0.,
- 1.
- );
- int[] aiSampleSize = new int[] {
- 50, 500, 5000, 50000, 500000, 5000000, 50000000
- };
- double[] adblTolerance = new double[] {
- 0.01, 0.03, 0.05, 0.07, 0.10
- };
- Head ("\t| WEAK LAW OF LARGE NUMBERS - METRICS FROM UNDERLYING GENERATOR |");
- WeakLawBounds (
- uniformRandom,
- uniformDistribution,
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| WEAK LAW OF LARGE NUMBERS - METRICS FROM EMPIRICAL DISTRIBUTION |");
- WeakLawBounds (
- uniformRandom,
- null,
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| CHERNOFF-HOEFFDING BOUNDS - METRICS FROM UNDERLYING GENERATOR |");
- ChernoffHoeffdingBounds (
- uniformRandom,
- uniformDistribution,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| CHERNOFF-HOEFFDING BOUNDS - METRICS FROM EMPIRICAL DISTRIBUTION |");
- ChernoffHoeffdingBounds (
- uniformRandom,
- null,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| BENNETT BOUNDS - METRICS FROM UNDERLYING GENERATOR |");
- BennettBounds (
- uniformRandom,
- uniformDistribution,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| BENNETT BOUNDS - METRICS FROM EMPIRICAL DISTRIBUTION |");
- BennettBounds (
- uniformRandom,
- null,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| BERNSTEIN BOUNDS - METRICS FROM UNDERLYING GENERATOR |");
- BernsteinBounds (
- uniformRandom,
- uniformDistribution,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- Head ("\t| BERNSTEIN BOUNDS - METRICS FROM EMPIRICAL DISTRIBUTION |");
- BernsteinBounds (
- uniformRandom,
- uniformDistribution,
- uniformRandom.upperBound() - uniformRandom.lowerBound(),
- aiSampleSize,
- adblTolerance
- );
- System.out.println ("\t|---------------------------------------------------------------------------------------|");
- }
- }