IntegerRandomSequenceBound.java
- package org.drip.sample.sequence;
- import org.drip.measure.continuous.R1Univariate;
- import org.drip.measure.discrete.*;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.sequence.metrics.*;
- import org.drip.sequence.random.*;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * IntegerRandomSequenceBound demonstrates the Computation of the Probabilistic Bounds for a Sample Random
- * Integer Sequence.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IntegerRandomSequenceBound {
- private static final void IntegerBounds (
- final UnivariateSequenceGenerator iidsg,
- final R1Univariate dist,
- final int[] aiSampleSize)
- throws Exception
- {
- for (int iSampleSize : aiSampleSize) {
- IntegerSequenceAgnosticMetrics ssamDist = (IntegerSequenceAgnosticMetrics) iidsg.sequence (
- iSampleSize,
- dist
- );
- String strDump = "\t| " + FormatUtil.FormatDouble (iSampleSize, 3, 0, 1) + " => ";
- strDump +=
- FormatUtil.FormatDouble (ssamDist.probGreaterThanZeroUpperBound(), 1, 9, 1.) + " | " +
- FormatUtil.FormatDouble (ssamDist.probEqualToZeroUpperBound(), 1, 9, 1.) + " | ";
- System.out.println (strDump);
- }
- }
- public static void main (
- final String[] args)
- throws Exception
- {
- EnvManager.InitEnv ("");
- BoundedUniformInteger buiSequence = new BoundedUniformInteger (
- 0,
- 100
- );
- BoundedUniformIntegerDistribution buiDistribution = new BoundedUniformIntegerDistribution (
- 0,
- 100
- );
- int[] aiSampleSize = new int[] {
- 10, 20, 50, 100, 250
- };
- System.out.println();
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- System.out.println ("\t| Generating Integer Random Sequence Metrics");
- System.out.println ("\t| \tL -> R:");
- System.out.println ("\t| \t\tSample Size");
- System.out.println ("\t| \t\tUpper Probability Bound for X != 0");
- System.out.println ("\t| \t\tUpper Probability Bound for X = 0");
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- System.out.println ("\t| Generating Metrics off of Underlying Distribution");
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- IntegerBounds (
- buiSequence,
- buiDistribution,
- aiSampleSize
- );
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- System.out.println();
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- System.out.println ("\t| Generating Metrics off of Empirical Distribution");
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- IntegerBounds (
- buiSequence,
- null,
- aiSampleSize
- );
- System.out.println ("\t|----------------------------------------------------------------------------------|");
- }
- }