BlackLittermanBayesianClient.java

  1. package org.drip.sample.service;

  2. import org.drip.json.parser.Converter;
  3. import org.drip.json.simple.JSONObject;
  4. import org.drip.service.env.EnvManager;
  5. import org.drip.service.json.KeyHoleSkeleton;

  6. /*
  7.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  8.  */

  9. /*!
  10.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  12.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  13.  *
  14.  *  This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
  15.  *      libraries targeting analysts and developers
  16.  *      https://lakshmidrip.github.io/DRIP/
  17.  *  
  18.  *  DRIP is composed of four main libraries:
  19.  *  
  20.  *  - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
  21.  *  - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
  22.  *  - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
  23.  *  - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
  24.  *
  25.  *  - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
  26.  *      Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
  27.  *      Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
  28.  *      Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
  29.  *      Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
  30.  *
  31.  *  - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
  32.  *      Incorporator, Holdings Constraint, and Transaction Costs.
  33.  *
  34.  *  - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
  35.  *
  36.  *  - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
  37.  *
  38.  *  Licensed under the Apache License, Version 2.0 (the "License");
  39.  *      you may not use this file except in compliance with the License.
  40.  *  
  41.  *  You may obtain a copy of the License at
  42.  *      http://www.apache.org/licenses/LICENSE-2.0
  43.  *  
  44.  *  Unless required by applicable law or agreed to in writing, software
  45.  *      distributed under the License is distributed on an "AS IS" BASIS,
  46.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  47.  *  
  48.  *  See the License for the specific language governing permissions and
  49.  *      limitations under the License.
  50.  */

  51. /**
  52.  * BudgetConstrainedAllocationClient demonstrates the Invocation and Examination of the JSON-based
  53.  *  Budget Constrained Portfolio Allocation Service Client.
  54.  *
  55.  * @author Lakshmi Krishnamurthy
  56.  */

  57. public class BlackLittermanBayesianClient {

  58.     @SuppressWarnings ("unchecked") public static final void main (
  59.         final String[] astrArgs)
  60.         throws Exception
  61.     {
  62.         EnvManager.InitEnv ("");

  63.         double dblTau = 1.0000;
  64.         double dblDelta = 2.6;
  65.         double dblRiskFreeRate = 0.00;

  66.         String[] astrAssetName = new String[] {
  67.             "ASSET 1",
  68.             "ASSET 2",
  69.             "ASSET 3",
  70.             "ASSET 4",
  71.             "ASSET 5",
  72.             "ASSET 6"
  73.         };

  74.         double[] adblAssetEquilibriumWeight = new double[] {
  75.             0.2535,
  76.             0.1343,
  77.             0.1265,
  78.             0.1375,
  79.             0.0733,
  80.             0.2749
  81.         };

  82.         double[][] aadblAssetExcessReturnsCovariance = new double[][] {
  83.             {0.00273, 0.00208, 0.00159, 0.00049, 0.00117, 0.00071},
  84.             {0.00208, 0.00277, 0.00130, 0.00046, 0.00111, 0.00056},
  85.             {0.00159, 0.00130, 0.00146, 0.00064, 0.00105, 0.00052},
  86.             {0.00049, 0.00046, 0.00064, 0.00061, 0.00066, 0.00037},
  87.             {0.00117, 0.00111, 0.00105, 0.00066, 0.00139, 0.00066},
  88.             {0.00071, 0.00056, 0.00052, 0.00037, 0.00066, 0.00070}
  89.         };

  90.         double[][] aadblAssetSpaceViewProjection = new double[][] {
  91.             {  0.00,  0.00, -1.00,  0.00,  1.00,  0.00},
  92.             {  0.00,  1.00,  0.00,  0.00, -1.00,  0.00},
  93.             { -1.00,  1.00,  1.00,  0.00,  0.00, -1.00}
  94.         };

  95.         double[] adblProjectionExpectedExcessReturns = new double[] {
  96.             0.0002,
  97.             0.0003,
  98.             0.0001
  99.         };

  100.         double[][] aadblProjectionExcessReturnsCovariance = new double[][] {
  101.             { 0.00075, -0.00053, -0.00033},
  102.             {-0.00053,  0.00195,  0.00110},
  103.             {-0.00033,  0.00110,  0.00217}
  104.         };

  105.         JSONObject jsonParameters = new JSONObject();

  106.         jsonParameters.put (
  107.             "AssetSet",
  108.             Converter.Array (astrAssetName)
  109.         );

  110.         jsonParameters.put (
  111.             "AssetSpaceViewProjection",
  112.             Converter.Array (aadblAssetSpaceViewProjection)
  113.         );

  114.         jsonParameters.put (
  115.             "AssetEquilibriumWeight",
  116.             Converter.Array (adblAssetEquilibriumWeight)
  117.         );

  118.         jsonParameters.put (
  119.             "AssetExcessReturnsCovariance",
  120.             Converter.Array (aadblAssetExcessReturnsCovariance)
  121.         );

  122.         jsonParameters.put (
  123.             "ProjectionExpectedExcessReturns",
  124.             Converter.Array (adblProjectionExpectedExcessReturns)
  125.         );

  126.         jsonParameters.put (
  127.             "ProjectionExcessReturnsCovariance",
  128.             Converter.Array (aadblProjectionExcessReturnsCovariance)
  129.         );

  130.         jsonParameters.put (
  131.             "RiskFreeRate",
  132.             dblRiskFreeRate
  133.         );

  134.         jsonParameters.put (
  135.             "Delta",
  136.             dblDelta
  137.         );

  138.         jsonParameters.put (
  139.             "Tau",
  140.             dblTau
  141.         );

  142.         JSONObject jsonRequest = new JSONObject();

  143.         jsonRequest.put (
  144.             "API",
  145.             "BLACKLITTERMAN::BAYESIANMETRICS"
  146.         );

  147.         jsonRequest.put ("Parameters", jsonParameters);

  148.         System.out.println ("\n\t|---------------- JSON REQUEST -----------------|\n");

  149.         System.out.println (jsonRequest.toJSONString());

  150.         System.out.println ("\n\t|---------------- JSON RESPONSE ----------------|\n");

  151.         System.out.println (KeyHoleSkeleton.Thunker (jsonRequest.toJSONString()));
  152.     }
  153. }