CreditQualifyingBucketVegaMargin20.java
package org.drip.sample.simmcrq;
import java.util.HashMap;
import java.util.Map;
import org.drip.analytics.support.CaseInsensitiveHashMap;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
import org.drip.simm.foundation.MarginEstimationSettings;
import org.drip.simm.margin.RiskMeasureAggregateCR;
import org.drip.simm.parameters.RiskMeasureSensitivitySettingsCR;
import org.drip.simm.product.BucketSensitivityCR;
import org.drip.simm.product.RiskFactorTenorSensitivity;
import org.drip.simm.product.RiskMeasureSensitivityCR;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* CreditQualifyingBucketVegaMargin20 illustrates the Computation of the SIMM 2.0 CR Vega Margin for a
* Bucket's Credit Exposure Sensitivities. The References are:
*
* - Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial Margin,
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156, eSSRN.
*
* - Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin
* Calculations, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488, eSSRN.
*
* - Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing
* Framework for Forecasting Initial Margin Requirements,
* https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279, eSSRN.
*
* - Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin Requirements
* - A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167, eSSRN.
*
* - International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology,
* https://www.isda.org/a/oFiDE/isda-simm-v2.pdf.
*
* @author Lakshmi Krishnamurthy
*/
public class CreditQualifyingBucketVegaMargin20
{
private static final void AddTenorSensitivity (
final Map<String, Double> tenorSensitivityMap,
final double notional,
final String tenor)
throws Exception
{
if (tenorSensitivityMap.containsKey (tenor))
{
tenorSensitivityMap.put (
tenor,
tenorSensitivityMap.get (tenor) + notional * (Math.random() - 0.5)
);
}
else
{
tenorSensitivityMap.put (
tenor,
notional * (Math.random() - 0.5)
);
}
}
private static final RiskFactorTenorSensitivity CurveTenorSensitivityMap (
final double notional)
throws Exception
{
Map<String, Double> tenorSensitivityMap = new HashMap<String, Double>();
AddTenorSensitivity (
tenorSensitivityMap,
notional,
"1Y"
);
AddTenorSensitivity (
tenorSensitivityMap,
notional,
"2Y"
);
AddTenorSensitivity (
tenorSensitivityMap,
notional,
"3Y"
);
AddTenorSensitivity (
tenorSensitivityMap,
notional,
"5Y"
);
AddTenorSensitivity (
tenorSensitivityMap,
notional,
"10Y"
);
return new RiskFactorTenorSensitivity (tenorSensitivityMap);
}
private static final void DisplayComponentTenorSensitivity (
final String componentName,
final RiskFactorTenorSensitivity tenorSensitivityMap)
throws Exception
{
System.out.println();
System.out.println ("\t|--------------||");
System.out.println ("\t| " + componentName + " VEGA ||");
System.out.println ("\t|--------------||");
System.out.println ("\t| ||");
System.out.println ("\t| L -> R: ||");
System.out.println ("\t| - Tenor ||");
System.out.println ("\t| - Delta ||");
System.out.println ("\t|--------------||");
for (Map.Entry<String, Double> tenorSensitivityEntry :
tenorSensitivityMap.sensitivityMap().entrySet())
{
System.out.println (
"\t| " +
tenorSensitivityEntry.getKey() + " => " +
FormatUtil.FormatDouble (tenorSensitivityEntry.getValue(), 2, 2, 1.) + " ||"
);
}
System.out.println ("\t|--------------||");
System.out.println();
}
private static final void ComponentRiskFactorTenorSensitivity (
final Map<String, RiskFactorTenorSensitivity> tenorSensitivityMap,
final double notional,
final String componentName)
throws Exception
{
RiskFactorTenorSensitivity ustRiskFactorSensitivity = CurveTenorSensitivityMap (notional);
tenorSensitivityMap.put (
componentName,
ustRiskFactorSensitivity
);
}
private static final void DisplayRiskMeasureAggregate (
final RiskMeasureAggregateCR riskMeasureAggregateCR)
throws Exception
{
System.out.println ("\t||--------------------------------------------||");
System.out.println ("\t|| CR RISK CLASS AGGREGATE MARGIN METRICS ||");
System.out.println ("\t||--------------------------------------------||");
System.out.println (
"\t|| Core Vega SBA Variance => " +
FormatUtil.FormatDouble (riskMeasureAggregateCR.coreSBAVariance(), 10, 0, 1.) + " ||"
);
System.out.println (
"\t|| Residual Vega SBA Variance => " +
FormatUtil.FormatDouble (riskMeasureAggregateCR.residualSBAVariance(), 10, 0, 1.) + " ||"
);
System.out.println (
"\t|| Vega SBA => " +
FormatUtil.FormatDouble (riskMeasureAggregateCR.sba(), 10, 0, 1.) + " ||"
);
System.out.println ("\t||--------------------------------------------||");
System.out.println();
}
public static final void main (
final String[] inputs)
throws Exception
{
EnvManager.InitEnv ("");
int bucketIndex = 1;
double notional = 100.;
String[] componentNameArray = new String[]
{
"UST",
"BND",
"FRT",
"ITA",
"ESP",
"GLT",
};
Map<String, RiskFactorTenorSensitivity> tenorSensitivityMap = new
CaseInsensitiveHashMap<RiskFactorTenorSensitivity>();
for (String componentName : componentNameArray)
{
ComponentRiskFactorTenorSensitivity (
tenorSensitivityMap,
notional,
componentName
);
}
BucketSensitivityCR bucketSensitivityCR = new BucketSensitivityCR (tenorSensitivityMap);
DisplayComponentTenorSensitivity (
"NET",
bucketSensitivityCR.cumulativeTenorSensitivityMap()
);
MarginEstimationSettings marginEstimationSettings = MarginEstimationSettings.CornishFischer
(MarginEstimationSettings.POSITION_PRINCIPAL_COMPONENT_COVARIANCE_ESTIMATOR_ISDA);
RiskMeasureSensitivitySettingsCR riskMeasureSensitivitySettingsCR =
RiskMeasureSensitivitySettingsCR.ISDA_CRQ_VEGA_20();
Map<String, BucketSensitivityCR> bucketSensitivityMap = new
CaseInsensitiveHashMap<BucketSensitivityCR>();
bucketSensitivityMap.put (
"" + bucketIndex,
bucketSensitivityCR
);
RiskMeasureSensitivityCR riskMeasureSensitivityCR = new RiskMeasureSensitivityCR
(bucketSensitivityMap);
RiskMeasureAggregateCR riskMeasureAggregateCR = riskMeasureSensitivityCR.linearAggregate (
riskMeasureSensitivitySettingsCR,
marginEstimationSettings
);
DisplayRiskMeasureAggregate (riskMeasureAggregateCR);
EnvManager.TerminateEnv();
}
}