BasisSplineSet.java
- package org.drip.sample.spline;
- import org.drip.function.r1tor1.*;
- import org.drip.numerical.differentiation.WengertJacobian;
- import org.drip.spline.basis.*;
- import org.drip.spline.params.*;
- import org.drip.spline.segment.*;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * BasisSplineSet implements Samples for the Construction and the usage of various basis spline functions. It
- * demonstrates the following:
- * - Construction of segment control parameters - polynomial (regular/Bernstein) segment control,
- * exponential/hyperbolic tension segment control, Kaklis-Pandelis tension segment control, and C1
- * Hermite.
- * - Control the segment using the rational shape controller, and the appropriate Ck.
- * - Estimate the node value and the node value Jacobian with the segment, as well as at the boundaries.
- * - Calculate the segment monotonicity.
- * @author Lakshmi Krishnamurthy
- */
- public class BasisSplineSet {
- /*
- * Sample demonstrating the creation of the polynomial basis spline set
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final FunctionSet CreatePolynomialSpline()
- throws Exception
- {
- int iNumBasis = 4;
- /*
- * Create the basis parameter set from the number of basis functions, and construct the basis
- */
- PolynomialFunctionSetParams polybsbp = new PolynomialFunctionSetParams (iNumBasis);
- return FunctionSetBuilder.PolynomialBasisSet (polybsbp);
- }
- /*
- * Sample demonstrating the creation of the Bernstein polynomial basis spline set
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final FunctionSet CreateBernsteinPolynomialSpline()
- throws Exception
- {
- int iNumBasis = 4;
- /*
- * Create the basis parameter set from the number of basis functions, and construct the basis
- */
- PolynomialFunctionSetParams polybsbp = new PolynomialFunctionSetParams (iNumBasis);
- return FunctionSetBuilder.BernsteinPolynomialBasisSet (polybsbp);
- }
- /*
- * Sample demonstrating the creation of the exponential tension basis spline set
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final FunctionSet CreateExponentialTensionSpline()
- throws Exception
- {
- double dblTension = 1.;
- /*
- * Create the basis parameter set from the segment tension parameter, and construct the basis
- */
- ExponentialTensionSetParams etbsbp = new ExponentialTensionSetParams (dblTension);
- return FunctionSetBuilder.ExponentialTensionBasisSet (etbsbp);
- }
- /*
- * Sample demonstrating the creation of the hyperbolic tension basis spline set
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final FunctionSet CreateHyperbolicTensionSpline()
- throws Exception
- {
- double dblTension = 1.;
- /*
- * Create the basis parameter set from the segment tension parameter, and construct the basis
- */
- ExponentialTensionSetParams etbsbp = new ExponentialTensionSetParams (dblTension);
- return FunctionSetBuilder.HyperbolicTensionBasisSet (etbsbp);
- }
- /*
- * Sample demonstrating the creation of the Kaklis Pandelis basis spline set
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final FunctionSet CreateKaklisPandelisSpline()
- throws Exception
- {
- int iPolynomialTensionDegree = 2;
- /*
- * Create the basis parameter set from the segment polynomial tension control, and construct the basis
- */
- KaklisPandelisSetParams kpbpsp = new KaklisPandelisSetParams (iPolynomialTensionDegree);
- return FunctionSetBuilder.KaklisPandelisBasisSet (kpbpsp);
- }
- /*
- * This sample demonstrates the following:
- *
- * - Construction of two segments, 1 and 2.
- * - Calibration of the segments to the left and the right node values
- * - Extraction of the segment Jacobians and segment monotonicity
- * - Estimate point value and the Jacobian
- * - Estimate the curvature penalty
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void TestSpline (
- final FunctionSet fs,
- final ResponseScalingShapeControl rssc,
- final SegmentInelasticDesignControl segParams)
- throws Exception
- {
- /*
- * Construct the left and the right segments
- */
- LatentStateResponseModel seg1 = LatentStateResponseModel.Create (
- 1.0,
- 1.5,
- fs,
- rssc,
- segParams
- );
- LatentStateResponseModel seg2 = LatentStateResponseModel.Create (
- 1.5,
- 2.0,
- fs,
- rssc,
- segParams
- );
- /*
- * Calibrate the left segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj1 = seg1.jackDCoeffDEdgeParams (
- 25.,
- 0.,
- 20.25,
- null
- );
- System.out.println ("\tY[" + 1.0 + "]: " + seg1.responseValue (1.));
- System.out.println ("\tY[" + 1.5 + "]: " + seg1.responseValue (1.5));
- System.out.println ("Segment 1 Jacobian: " + wj1.displayString());
- System.out.println ("Segment 1 Head: " + seg1.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 1 Monotone Type: " + seg1.monotoneType());
- System.out.println ("Segment 1 DPE: " + seg1.curvatureDPE());
- /*
- * Calibrate the right segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj2 = seg2.jackDCoeffDEdgeParams (
- seg1,
- "Default",
- 16.,
- null,
- Double.NaN,
- null
- );
- System.out.println ("\tY[" + 1.5 + "]: " + seg2.responseValue (1.5));
- System.out.println ("\tY[" + 2. + "]: " + seg2.responseValue (2.));
- System.out.println ("Segment 2 Jacobian: " + wj2.displayString());
- System.out.println ("Segment 2 Regular Jacobian: " + seg2.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 2 Monotone Type: " + seg2.monotoneType());
- System.out.println ("Segment 2 DPE: " + seg2.curvatureDPE());
- /*
- * Re-calibrate Segment #2 with a different response value
- */
- seg2.calibrate (
- seg1,
- 14.,
- null
- );
- /*
- * Estimate the segment value at the given variate, and compute the corresponding Jacobian and curvature penalty
- */
- double dblX = 2.0;
- System.out.println ("\t\tValue[" + dblX + "]: " + seg2.responseValue (dblX));
- System.out.println ("\t\tValue Jacobian[" + dblX + "]: " + seg2.jackDResponseDEdgeInput (dblX, 1).displayString());
- System.out.println ("\t\tSegment 2 DPE: " + seg2.curvatureDPE());
- }
- /*
- * This sample demonstrates the following specifically for the C1 Hermite Splines, which are calibrated
- * using left and right node values, along with their derivatives:
- *
- * - Construction of two segments, 1 and 2.
- * - Calibration of the segments to the left and the right node values
- * - Extraction of the segment Jacobians and segment monotonicity
- * - Estimate point value and the Jacobian
- * - Estimate the curvature penalty
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void TestC1HermiteSpline (
- final FunctionSet fs,
- final ResponseScalingShapeControl sc,
- final SegmentInelasticDesignControl segParams)
- throws Exception
- {
- /*
- * Construct the left and the right segments
- */
- LatentStateResponseModel seg1 = LatentStateResponseModel.Create (
- 0.0,
- 1.0,
- fs,
- sc,
- segParams
- );
- LatentStateResponseModel seg2 = LatentStateResponseModel.Create (
- 1.0,
- 2.0,
- fs,
- sc,
- segParams
- );
- /*
- * Calibrate the left segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj1 = seg1.jackDCoeffDEdgeParams (
- new double[] {0., 1.}, // Left/Right X
- new double[] {1., 4.}, // Left/Right Y
- new double[] {1.}, // Left Deriv
- new double[] {6.}, // Right Deriv
- null,
- null // Constraints, Fitness Weighted Response
- );
- System.out.println ("\tY[" + 0.0 + "]: " + seg1.responseValue (0.0));
- System.out.println ("\tY[" + 1.0 + "]: " + seg1.responseValue (1.0));
- System.out.println ("Segment 1 Jacobian: " + wj1.displayString());
- System.out.println ("Segment 1 Head: " + seg1.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 1 Monotone Type: " + seg1.monotoneType());
- System.out.println ("Segment 1 DPE: " + seg1.curvatureDPE());
- /*
- * Calibrate the right segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj2 = seg2.jackDCoeffDEdgeParams (
- new double[] {1., 2.}, // Left/Right X
- new double[] {4., 15.}, // Left/Right Y
- new double[] {6.}, // Left Deriv
- new double[] {17.}, // Right Deriv
- null,
- null // Constraints, Fitness Weighted Response
- );
- System.out.println ("\tY[" + 1.0 + "]: " + seg2.responseValue (1.0));
- System.out.println ("\tY[" + 2.0 + "]: " + seg2.responseValue (2.0));
- System.out.println ("Segment 2 Jacobian: " + wj2.displayString());
- System.out.println ("Segment 2 Regular Jacobian: " + seg2.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 2 Monotone Type: " + seg2.monotoneType());
- System.out.println ("Segment 2 DPE: " + seg2.curvatureDPE());
- /*
- * Re-calibrate Segment #2 with a different response value
- */
- seg2.calibrate (
- seg1,
- 14.,
- null
- );
- /*
- * Estimate the segment value at the given variate, and compute the corresponding Jacobian, monotonicity, and curvature penalty
- */
- double dblX = 2.0;
- System.out.println ("\t\tValue[" + dblX + "]: " + seg2.responseValue (dblX));
- System.out.println ("\t\tValue Jacobian[" + dblX + "]: " + seg2.jackDResponseDEdgeInput (dblX, 1).displayString());
- System.out.println ("\t\tSegment 2 DPE: " + seg2.curvatureDPE());
- }
- /*
- * This sample illustrates the construction and the usage of basis splines (all types, really). It shows
- * the following:
- * - Construct a rational shape controller with the specified shape controller tension.
- * - Construct the segment inelastic parameter that is C2 (iK = 2 sets it to C2), with second order
- * curvature penalty, and without constraint.
- * - Test the polynomial basis spline.
- * - Test the Bernstein polynomial basis spline.
- * - Test the exponential tension basis spline.
- * - Test the hyperbolic tension basis spline.
- * - Test the Kaklis-Pandelis basis spline.
- * - Test the C1 Hermite basis spline.
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void BasisSplineSetSample()
- throws Exception
- {
- /*
- * Construct a rational shape controller with the shape controller tension of 1.
- */
- double dblShapeControllerTension = 1.;
- ResponseScalingShapeControl rssc = new ResponseScalingShapeControl (
- true,
- new QuadraticRationalShapeControl (dblShapeControllerTension)
- );
- /*
- * Construct the segment inelastic parameter that is C2 (iK = 2 sets it to C2), with second order
- * curvature penalty, and without constraint
- */
- int iK = 2;
- int iCurvaturePenaltyDerivativeOrder = 2;
- SegmentInelasticDesignControl segParams = SegmentInelasticDesignControl.Create (
- iK,
- iCurvaturePenaltyDerivativeOrder
- );
- /*
- * Test the polynomial spline
- */
- System.out.println (" ---------- \n POLYNOMIAL \n ---------- \n");
- TestSpline (
- CreatePolynomialSpline(),
- null,
- segParams
- );
- /*
- * Test the Bernstein polynomial spline
- */
- System.out.println (" -------------------- \n BERNSTEINPOLYNOMIAL \n -------------------- \n");
- TestSpline (
- CreateBernsteinPolynomialSpline(),
- rssc,
- segParams
- );
- /*
- * Test the exponential tension spline
- */
- System.out.println ( " ----------- \n EXPONENTIAL \n ----------- \n");
- TestSpline (
- CreateExponentialTensionSpline(),
- rssc,
- segParams
- );
- /*
- * Test the hyperbolic tension spline
- */
- System.out.println (" ---------- \n HYPERBOLIC \n ---------- \n");
- TestSpline (
- CreateHyperbolicTensionSpline(),
- rssc,
- segParams
- );
- /*
- * Test the Kaklis-Pandelis spline
- */
- System.out.println (" -------------------- \n KAKLISPANDELIS \n -------------------- \n");
- TestSpline (
- CreateKaklisPandelisSpline(),
- rssc,
- segParams
- );
- /*
- * Test the C1 Hermite spline
- */
- System.out.println (" -------------------- \n C1 HERMITE \n -------------------- \n");
- TestC1HermiteSpline (
- CreatePolynomialSpline(),
- rssc,
- SegmentInelasticDesignControl.Create (
- 1,
- iCurvaturePenaltyDerivativeOrder
- )
- );
- }
- public static final void main (
- final String[] astrArgs)
- throws Exception
- {
- BasisSplineSetSample();
- }
- }