PolynomialBasisSpline.java
- package org.drip.sample.spline;
- import org.drip.function.r1tor1.*;
- import org.drip.numerical.differentiation.WengertJacobian;
- import org.drip.spline.basis.*;
- import org.drip.spline.params.*;
- import org.drip.spline.segment.*;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * PolynomialBasisSpline implements Samples for the Construction and the usage of polynomial (both regular
- * and Hermite) basis spline functions. It demonstrates the following:
- * - Control the polynomial segment using the rational shape controller, the appropriate Ck, and the basis
- * function.
- * - Demonstrate the variational shape optimization behavior.
- * - Estimate the node value and the node value Jacobian with the segment, as well as at the boundaries.
- * - Calculate the segment monotonicity and the curvature penalty.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class PolynomialBasisSpline {
- /*
- * This sample demonstrates the following:
- *
- * - Construction of two segments, 1 and 2.
- * - Calibration of the segments to the left and the right node values
- * - Extraction of the segment Jacobians and segment monotonicity
- * - Estimate point value and the Jacobian, monotonicity, and curvature penalty
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void TestPolynomialSpline (
- final int iNumBasis,
- final int iCk,
- final int iRoughnessPenaltyDerivativeOrder,
- final ResponseScalingShapeControl rssc)
- throws Exception
- {
- System.out.println (" ------------------------------ \n POLYNOMIAL n = " + iNumBasis +
- "; Ck = " + iCk + "\n ------------------------------ \n");
- /*
- * Construct the segment inelastic parameter that is C2 (iCk = 2 sets it to C2), without constraint
- */
- SegmentInelasticDesignControl sdic = SegmentInelasticDesignControl.Create (
- iCk,
- iRoughnessPenaltyDerivativeOrder
- );
- /*
- * Create the basis parameter set from the number of basis functions, and construct the basis
- */
- PolynomialFunctionSetParams pfsp = new PolynomialFunctionSetParams (iNumBasis);
- FunctionSet fs = FunctionSetBuilder.PolynomialBasisSet (pfsp);
- /*
- * Construct the left and the right segments
- */
- LatentStateResponseModel ecs1 = LatentStateResponseModel.Create (
- 1.0,
- 1.5,
- fs,
- rssc,
- sdic
- );
- LatentStateResponseModel ecs2 = LatentStateResponseModel.Create (
- 1.5,
- 2.0,
- fs,
- rssc,
- sdic
- );
- /*
- * Calibrate the left segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj1 = ecs1.jackDCoeffDEdgeParams (
- 25.,
- 0.,
- 20.25,
- null
- );
- System.out.println ("\tY[" + 1.0 + "]: " + ecs1.responseValue (1.));
- System.out.println ("\tY[" + 1.5 + "]: " + ecs1.responseValue (1.5));
- System.out.println ("Segment 1 Jacobian: " + wj1.displayString());
- System.out.println ("Segment 1 Head: " + ecs1.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 1 Monotone Type: " + ecs1.monotoneType());
- System.out.println ("Segment 1 DPE: " + ecs1.curvatureDPE());
- /*
- * Calibrate the right segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- WengertJacobian wj2 = ecs2.jackDCoeffDEdgeParams (
- ecs1,
- "Default",
- 16.,
- null,
- Double.NaN,
- null
- );
- System.out.println ("\tY[" + 1.5 + "]: " + ecs2.responseValue (1.5));
- System.out.println ("\tY[" + 2. + "]: " + ecs2.responseValue (2.));
- System.out.println ("Segment 2 Jacobian: " + wj2.displayString());
- System.out.println ("Segment 2 Regular Jacobian: " + ecs2.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 2 Monotone Type: " + ecs2.monotoneType());
- System.out.println ("Segment 2 DPE: " + ecs2.curvatureDPE());
- /*
- * Re-calibrate Segment #2 with a new Response Value
- */
- ecs2.calibrate (
- ecs1,
- 14.,
- null
- );
- /*
- * Estimate the segment value at the given variate, and compute the corresponding Jacobian, and curvature penalty
- */
- double dblX = 2.0;
- System.out.println ("\t\tValue[" + dblX + "]: " + ecs2.responseValue (dblX));
- System.out.println ("\t\tValue Jacobian[" + dblX + "]: " + ecs2.jackDResponseDEdgeInput (dblX, 1).displayString());
- System.out.println ("\t\tSegment 2 DPE: " + ecs2.curvatureDPE());
- }
- /*
- * This sample demonstrates the following specifically for the Ck Hermite Splines, which are calibrated
- * using left and right node values, along with their derivatives:
- *
- * - Construction of two segments, 1 and 2.
- * - Calibration of the segments to the left and the right node values
- * - Extraction of the segment Jacobians and segment monotonicity
- * - Estimate point value and the Jacobian, monotonicity, and curvature penalty
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void TestC1HermiteSpline (
- final int iNumBasis,
- final int iCk,
- final int iRoughnessPenaltyDerivativeOrder,
- final ResponseScalingShapeControl rssc)
- throws Exception
- {
- System.out.println (" ------------------------------ \n HERMITE POLYNOMIAL n = " + iNumBasis +
- "; Ck = " + iCk + "\n ------------------------------ \n");
- /*
- * Construct the segment inelastic parameter that is C2 (iCk = 2 sets it to C2), without constraint
- */
- SegmentInelasticDesignControl sdic = SegmentInelasticDesignControl.Create (
- iCk,
- iRoughnessPenaltyDerivativeOrder
- );
- /*
- * Create the basis parameter set from the number of basis functions, and construct the basis
- */
- PolynomialFunctionSetParams pfsp = new PolynomialFunctionSetParams (iNumBasis);
- FunctionSet fs = FunctionSetBuilder.PolynomialBasisSet (pfsp);
- /*
- * Construct the left and the right segments
- */
- LatentStateResponseModel ecs1 = LatentStateResponseModel.Create (
- 0.0,
- 1.0,
- fs,
- rssc,
- sdic
- );
- LatentStateResponseModel ecs2 = LatentStateResponseModel.Create (
- 1.0,
- 2.0,
- fs,
- rssc,
- sdic
- );
- /*
- * Calibrate the left segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- ecs1.calibrateState (
- new SegmentStateCalibrationInputs (
- new double[] {0., 1.}, // Segment Calibration Nodes
- new double[] {1., 4.}, // Segment Calibration Values
- new double[] {1.}, // Segment Left Derivative
- new double[] {6.}, // Segment Left Derivative
- null,
- null // Segment Constraint AND Fitness Penalty Response
- )
- );
- System.out.println ("\tY[" + 0.0 + "]: " + ecs1.responseValue (0.0));
- System.out.println ("\tY[" + 1.0 + "]: " + ecs1.responseValue (1.0));
- System.out.println ("Segment 1 Head: " + ecs1.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 1 Monotone Type: " + ecs1.monotoneType());
- System.out.println ("Segment 1 DPE: " + ecs1.curvatureDPE());
- /*
- * Calibrate the right segment using the node values, and compute the segment Jacobian, monotonicity, and curvature penalty
- */
- ecs2.calibrateState (
- new SegmentStateCalibrationInputs (
- new double[] {1., 2.}, // Segment Calibration Nodes
- new double[] {4., 15.}, // Segment Calibration Values
- new double[] {6.}, // Segment Left Derivative
- new double[] {17.}, // Segment Left Derivative
- null, // Segment Constraint
- null // Fitness Penalty Response
- )
- );
- System.out.println ("\tY[" + 1.0 + "]: " + ecs2.responseValue (1.0));
- System.out.println ("\tY[" + 2.0 + "]: " + ecs2.responseValue (2.0));
- System.out.println ("Segment 2 Regular Jacobian: " + ecs2.jackDCoeffDEdgeInputs().displayString());
- System.out.println ("Segment 2 Monotone Type: " + ecs2.monotoneType());
- System.out.println ("Segment 2 DPE: " + ecs2.curvatureDPE());
- /*
- * Re-calibrate Segment #2 with a new Response Value
- */
- ecs2.calibrate (
- ecs1,
- 14.,
- null
- );
- /*
- * Estimate the segment value at the given variate, and compute the corresponding Jacobian, monotonicity, and curvature penalty
- */
- double dblX = 2.0;
- System.out.println ("\t\tValue[" + dblX + "]: " + ecs2.responseValue (dblX));
- System.out.println ("\t\tValue Jacobian[" + dblX + "]: " + ecs2.jackDResponseDEdgeInput (dblX, 1).displayString());
- System.out.println ("\t\tSegment 2 DPE: " + ecs2.curvatureDPE());
- }
- /*
- * This sample illustrates the construction and usage for polynomial basis splines. It shows the
- * following:
- * - Construct a rational shape controller with the specified shape controller tension.
- * - Set the Roughness Penalty to 2nd order Roughness Penalty Derivative Order.
- * - Test the polynomial spline across different polynomial degrees and Ck's.
- * - Test the C1 Hermite spline.
- *
- * USE WITH CARE: This sample ignores errors and does not handle exceptions.
- */
- private static final void PolynomialBasisSplineSample()
- throws Exception
- {
- /*
- * Construct a rational shape controller with the shape controller tension of 1.
- */
- double dblShapeControllerTension = 1.;
- ResponseScalingShapeControl rssc = new ResponseScalingShapeControl (
- true,
- new QuadraticRationalShapeControl (dblShapeControllerTension)
- );
- /*
- * Set to 2nd order Roughness Penalty Derivative Order.
- */
- int iRoughnessPenaltyDerivativeOrder = 2;
- /*
- * Test the polynomial spline across different polynomial degrees and Ck's
- */
- TestPolynomialSpline (2, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (3, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (3, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (4, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (4, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (4, 2, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (5, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (5, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (5, 2, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (5, 3, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (6, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (6, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (6, 2, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (6, 3, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (6, 4, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 0, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 2, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 3, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 4, iRoughnessPenaltyDerivativeOrder, rssc);
- TestPolynomialSpline (7, 5, iRoughnessPenaltyDerivativeOrder, rssc);
- /*
- * Test the C1 Hermite spline
- */
- System.out.println (" -------------------- \n Ck HERMITE \n -------------------- \n");
- TestC1HermiteSpline (4, 1, iRoughnessPenaltyDerivativeOrder, rssc);
- }
- public static final void main (
- final String[] astrArgs)
- throws Exception
- {
- PolynomialBasisSplineSample();
- }
- }