CorrelatedRdSequence.java
- package org.drip.sample.statistics;
- import org.drip.measure.crng.RandomNumberGenerator;
- import org.drip.measure.discrete.*;
- import org.drip.measure.statistics.MultivariateDiscrete;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.service.env.EnvManager;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * CorrelatedRdSequence demonstrates the Generation of the Statistical Measures for the Input Correlated
- * Sequence Set created using the Multi-Path Correlated Random Variable Generator without Quadratic
- * Re-sampling or Antithetic Variables.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class CorrelatedRdSequence {
- public static final void main (
- final String[] astrArgs)
- throws Exception
- {
- EnvManager.InitEnv ("");
- int iNumPath = 1;
- int iNumVertex = 50000;
- boolean bApplyAntithetic = false;
- double[][] aadblCorrelationInput = new double[][] {
- {1.000, 0.161, 0.245, 0.352, 0.259, 0.166, 0.003, 0.038, 0.114}, // USD_LIBOR_3M
- {0.161, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // EUR_LIBOR_3M
- {0.245, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // JPY_LIBOR_3M
- {0.352, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // CHF_LIBOR_3M
- {0.259, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000}, // GBP_LIBOR_3M
- {0.166, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000}, // EURUSD
- {0.003, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000}, // JPYUSD
- {0.038, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000}, // CHFUSD
- {0.114, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000}, // GBPUSD
- };
- CorrelatedPathVertexDimension cpvd = new CorrelatedPathVertexDimension (
- new RandomNumberGenerator(),
- aadblCorrelationInput,
- iNumVertex,
- iNumPath,
- bApplyAntithetic,
- null
- );
- VertexRd vertexRd = cpvd.multiPathVertexRd()[0];
- MultivariateDiscrete mds = new MultivariateDiscrete (vertexRd.flatform());
- double[] adblMeanOutput = mds.mean();
- double[] adblErrorOutput = mds.error();
- double[] adblVarianceOutput = mds.variance();
- double[][] aadblCovarianceOutput = mds.covariance();
- double[][] aadblCorrelationOutput = mds.correlation();
- double[] adblStandardDeviationOutput = mds.standardDeviation();
- System.out.println();
- System.out.println ("\t||-------------------------------------------||");
- System.out.println ("\t|| R^1 METRICS ||");
- System.out.println ("\t||-------------------------------------------||");
- System.out.println ("\t|| L -> R: ||");
- System.out.println ("\t|| - Mean ||");
- System.out.println ("\t|| - Error ||");
- System.out.println ("\t|| - Variance ||");
- System.out.println ("\t|| - Standard Deviation ||");
- System.out.println ("\t||-------------------------------------------||");
- for (int i = 0; i < adblMeanOutput.length; ++i)
- System.out.println ("\t|| " +
- FormatUtil.FormatDouble (adblMeanOutput[i], 1, 5, 1.) + " | " +
- FormatUtil.FormatDouble (adblErrorOutput[i], 1, 5, 1.) + " | " +
- FormatUtil.FormatDouble (adblVarianceOutput[i], 1, 5, 1.) + " | " +
- FormatUtil.FormatDouble (adblStandardDeviationOutput[i], 1, 5, 1.) + " ||"
- );
- System.out.println ("\t||-------------------------------------------||");
- System.out.println();
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println ("\t|| INPUT CORRELATION ||");
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- for (int i = 0; i < adblMeanOutput.length; ++i) {
- String strDump = "\t|| ";
- for (int j = 0; j < adblMeanOutput.length; ++j)
- strDump = strDump + FormatUtil.FormatDouble (aadblCorrelationInput[i][j], 1, 5, 1.) + " |";
- System.out.println (strDump + "|");
- }
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println();
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println ("\t|| OUTPUT CORRELATION ||");
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- for (int i = 0; i < adblMeanOutput.length; ++i) {
- String strDump = "\t|| ";
- for (int j = 0; j < adblMeanOutput.length; ++j)
- strDump = strDump + FormatUtil.FormatDouble (aadblCorrelationOutput[i][j], 1, 5, 1.) + " |";
- System.out.println (strDump + "|");
- }
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println();
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println ("\t|| OUTPUT COVARIANCE ||");
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- for (int i = 0; i < adblMeanOutput.length; ++i) {
- String strDump = "\t|| ";
- for (int j = 0; j < adblMeanOutput.length; ++j)
- strDump = strDump + FormatUtil.FormatDouble (aadblCovarianceOutput[i][j], 1, 5, 1.) + " |";
- System.out.println (strDump + "|");
- }
- System.out.println ("\t||------------------------------------------------------------------------------------------||");
- System.out.println();
- }
- }