CorrelatedRdSequence.java
package org.drip.sample.statistics;
import org.drip.measure.crng.RandomNumberGenerator;
import org.drip.measure.discrete.*;
import org.drip.measure.statistics.MultivariateDiscrete;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* CorrelatedRdSequence demonstrates the Generation of the Statistical Measures for the Input Correlated
* Sequence Set created using the Multi-Path Correlated Random Variable Generator without Quadratic
* Re-sampling or Antithetic Variables.
*
* @author Lakshmi Krishnamurthy
*/
public class CorrelatedRdSequence {
public static final void main (
final String[] astrArgs)
throws Exception
{
EnvManager.InitEnv ("");
int iNumPath = 1;
int iNumVertex = 50000;
boolean bApplyAntithetic = false;
double[][] aadblCorrelationInput = new double[][] {
{1.000, 0.161, 0.245, 0.352, 0.259, 0.166, 0.003, 0.038, 0.114}, // USD_LIBOR_3M
{0.161, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // EUR_LIBOR_3M
{0.245, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // JPY_LIBOR_3M
{0.352, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000}, // CHF_LIBOR_3M
{0.259, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.000}, // GBP_LIBOR_3M
{0.166, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000}, // EURUSD
{0.003, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000, 0.000}, // JPYUSD
{0.038, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 0.000}, // CHFUSD
{0.114, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000}, // GBPUSD
};
CorrelatedPathVertexDimension cpvd = new CorrelatedPathVertexDimension (
new RandomNumberGenerator(),
aadblCorrelationInput,
iNumVertex,
iNumPath,
bApplyAntithetic,
null
);
VertexRd vertexRd = cpvd.multiPathVertexRd()[0];
MultivariateDiscrete mds = new MultivariateDiscrete (vertexRd.flatform());
double[] adblMeanOutput = mds.mean();
double[] adblErrorOutput = mds.error();
double[] adblVarianceOutput = mds.variance();
double[][] aadblCovarianceOutput = mds.covariance();
double[][] aadblCorrelationOutput = mds.correlation();
double[] adblStandardDeviationOutput = mds.standardDeviation();
System.out.println();
System.out.println ("\t||-------------------------------------------||");
System.out.println ("\t|| R^1 METRICS ||");
System.out.println ("\t||-------------------------------------------||");
System.out.println ("\t|| L -> R: ||");
System.out.println ("\t|| - Mean ||");
System.out.println ("\t|| - Error ||");
System.out.println ("\t|| - Variance ||");
System.out.println ("\t|| - Standard Deviation ||");
System.out.println ("\t||-------------------------------------------||");
for (int i = 0; i < adblMeanOutput.length; ++i)
System.out.println ("\t|| " +
FormatUtil.FormatDouble (adblMeanOutput[i], 1, 5, 1.) + " | " +
FormatUtil.FormatDouble (adblErrorOutput[i], 1, 5, 1.) + " | " +
FormatUtil.FormatDouble (adblVarianceOutput[i], 1, 5, 1.) + " | " +
FormatUtil.FormatDouble (adblStandardDeviationOutput[i], 1, 5, 1.) + " ||"
);
System.out.println ("\t||-------------------------------------------||");
System.out.println();
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println ("\t|| INPUT CORRELATION ||");
System.out.println ("\t||------------------------------------------------------------------------------------------||");
for (int i = 0; i < adblMeanOutput.length; ++i) {
String strDump = "\t|| ";
for (int j = 0; j < adblMeanOutput.length; ++j)
strDump = strDump + FormatUtil.FormatDouble (aadblCorrelationInput[i][j], 1, 5, 1.) + " |";
System.out.println (strDump + "|");
}
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println();
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println ("\t|| OUTPUT CORRELATION ||");
System.out.println ("\t||------------------------------------------------------------------------------------------||");
for (int i = 0; i < adblMeanOutput.length; ++i) {
String strDump = "\t|| ";
for (int j = 0; j < adblMeanOutput.length; ++j)
strDump = strDump + FormatUtil.FormatDouble (aadblCorrelationOutput[i][j], 1, 5, 1.) + " |";
System.out.println (strDump + "|");
}
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println();
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println ("\t|| OUTPUT COVARIANCE ||");
System.out.println ("\t||------------------------------------------------------------------------------------------||");
for (int i = 0; i < adblMeanOutput.length; ++i) {
String strDump = "\t|| ";
for (int j = 0; j < adblMeanOutput.length; ++j)
strDump = strDump + FormatUtil.FormatDouble (aadblCovarianceOutput[i][j], 1, 5, 1.) + " |";
System.out.println (strDump + "|");
}
System.out.println ("\t||------------------------------------------------------------------------------------------||");
System.out.println();
}
}