UnivariateSequence.java
package org.drip.sample.statistics;
import org.drip.feed.loader.*;
import org.drip.measure.statistics.UnivariateMoments;
import org.drip.numerical.common.FormatUtil;
import org.drip.service.env.EnvManager;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* UnivariateSequence demonstrates the Generation of the Statistical Measures for the Input Series of
* Univariate Sequences.
*
* @author Lakshmi Krishnamurthy
*/
public class UnivariateSequence {
public static final void main (
final String[] astrArgs)
throws Exception
{
EnvManager.InitEnv ("");
String strSeriesLocation = "C:\\DRIP\\CreditAnalytics\\Daemons\\Feeds\\MeanVarianceOptimizer\\FormattedSeries1.csv";
CSVGrid csvGrid = CSVParser.NamedStringGrid (strSeriesLocation);
UnivariateMoments mvTOK = UnivariateMoments.Standard (
csvGrid.header (1),
csvGrid.doubleArrayAtColumn (1)
);
UnivariateMoments mvEWJ = UnivariateMoments.Standard (
csvGrid.header (2),
csvGrid.doubleArrayAtColumn (2)
);
UnivariateMoments mvHYG = UnivariateMoments.Standard (
csvGrid.header (3),
csvGrid.doubleArrayAtColumn (3)
);
UnivariateMoments mvLQD = UnivariateMoments.Standard (
csvGrid.header (4),
csvGrid.doubleArrayAtColumn (4)
);
UnivariateMoments mvEMD = UnivariateMoments.Standard (
csvGrid.header (5),
csvGrid.doubleArrayAtColumn (5)
);
UnivariateMoments mvGSG = UnivariateMoments.Standard (
csvGrid.header (6),
csvGrid.doubleArrayAtColumn (6)
);
UnivariateMoments mvBWX = UnivariateMoments.Standard (
csvGrid.header (7),
csvGrid.doubleArrayAtColumn (7)
);
System.out.println ("\n\t|----------------------------||");
System.out.println (
"\t| " + mvTOK.name() + " | " +
FormatUtil.FormatDouble (mvTOK.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvTOK.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvTOK.numSample() + " ||"
);
System.out.println (
"\t| " + mvEWJ.name() + " | " +
FormatUtil.FormatDouble (mvEWJ.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvEWJ.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvEWJ.numSample() + " ||"
);
System.out.println (
"\t| " + mvHYG.name() + " | " +
FormatUtil.FormatDouble (mvHYG.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvHYG.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvHYG.numSample() + " ||"
);
System.out.println (
"\t| " + mvLQD.name() + " | " +
FormatUtil.FormatDouble (mvLQD.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvLQD.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvLQD.numSample() + " ||"
);
System.out.println (
"\t| " + mvEMD.name() + " | " +
FormatUtil.FormatDouble (mvEMD.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvEMD.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvEMD.numSample() + " ||"
);
System.out.println (
"\t| " + mvGSG.name() + " | " +
FormatUtil.FormatDouble (mvGSG.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvGSG.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvGSG.numSample() + " ||"
);
System.out.println (
"\t| " + mvBWX.name() + " | " +
FormatUtil.FormatDouble (mvBWX.mean(), 1, 2, 1200) + "% | " +
FormatUtil.FormatDouble (mvBWX.stdDev(), 2, 1, 100 * Math.sqrt (12)) + "% | " +
mvBWX.numSample() + " ||"
);
System.out.println ("\t|----------------------------||\n");
}
}