KnottedRegressionSplineEstimator.java
- package org.drip.sample.stretch;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.spline.basis.*;
- import org.drip.spline.params.*;
- import org.drip.spline.stretch.*;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * KnottedRegressionSplineEstimator shows the sample construction and usage of Knot-based Regression Splines.
- * It demonstrates construction of the segment's predictor ordinate/response value combination, and eventual
- * calibration.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class KnottedRegressionSplineEstimator {
- /*
- * Build Polynomial Segment Control Parameters
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- private static final SegmentCustomBuilderControl PolynomialSegmentControlParams (
- final int iNumBasis,
- final SegmentInelasticDesignControl sdic)
- throws Exception
- {
- return new SegmentCustomBuilderControl (
- MultiSegmentSequenceBuilder.BASIS_SPLINE_POLYNOMIAL,
- new PolynomialFunctionSetParams (iNumBasis),
- sdic,
- null,
- null
- );
- }
- /*
- * Basis Spline Stretch Test Sample. Performs the following:
- * - Construct the Array of Segment Builder Parameters - one per segment.
- * - Construct a Stretch instance using the predictor ordinate array and the Segment Best Fit Response Values.
- * - Estimate, compute the segment-by-segment monotonicity and the Stretch Jacobian
- * - Compute the Segment Curvature Penalty Estimate.
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- private static final void BasisSplineStretchTest (
- final double[] adblX,
- final SegmentCustomBuilderControl scbc,
- final StretchBestFitResponse sbfr)
- throws Exception
- {
- double dblX = 1.;
- double dblXMax = 10.;
- /*
- * Array of Segment Builder Parameters - one per segment
- */
- SegmentCustomBuilderControl[] aSCBC = new SegmentCustomBuilderControl[adblX.length - 1];
- for (int i = 0; i < adblX.length - 1; ++i)
- aSCBC[i] = scbc;
- /*
- * Construct a Stretch instance using the predictor ordinate array and the Segment Best Fit Response Values
- */
- MultiSegmentSequence mss = MultiSegmentSequenceBuilder.CreateRegressionSplineEstimator (
- "SPLINE_STRETCH",
- adblX, // predictors
- aSCBC, // Basis Segment Builder parameters
- sbfr,
- BoundarySettings.NaturalStandard(), // Boundary Condition - Natural
- MultiSegmentSequence.CALIBRATE // Calibrate the Stretch predictors to the responses
- );
- /*
- * Estimate, compute the segment-by-segment monotonicity and the Stretch Jacobian
- */
- while (dblX <= dblXMax) {
- System.out.println ("Y[" + dblX + "] " + FormatUtil.FormatDouble (mss.responseValue (dblX), 1, 2, 1.) + " | " +
- mss.monotoneType (dblX));
- System.out.println ("\t\tJacobian Y[" + dblX + "]=" + mss.jackDResponseDCalibrationInput (dblX, 1).displayString());
- dblX += 1.;
- }
- /*
- * Compute the Segment Curvature Penalty Estimate
- */
- System.out.println ("\tSPLINE_STRETCH DPE: " + mss.curvatureDPE());
- }
- /*
- * Bring together to compose the Regression Spline Estimator Test. It is made up of the following steps:
- * - Set the Predictor Ordinate Knot Points.
- * - Construct a set of Predictor Ordinates, their Responses, and corresponding Weights to serve as
- * weighted closeness of fit.
- * - Construct the segment inelastic parameter that is C2 (iK = 2 sets it to C2), with 2nd order
- * roughness penalty derivative, and without constraint.
- * - Basis Spline Stretch Test Using the Segment Best Fit Response.
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- private static final void RegressionSplineEstimatorTest()
- throws Exception
- {
- /*
- * Set the Knot Points
- */
- double[] adblX = new double[] { 1.00, 5.00, 10.00};
- /*
- * Construct a set of Predictor Ordinates, their Responses, and corresponding Weights to serve as
- * weighted closeness of fit.
- */
- StretchBestFitResponse sbfr = StretchBestFitResponse.Create (
- new double[] { 2.28, 2.52, 2.73, 3.00, 5.50, 8.44, 8.76, 9.08, 9.80, 9.92},
- new double[] {14.27, 12.36, 10.61, 9.25, -0.50, 7.92, 10.07, 12.23, 15.51, 16.36},
- new double[] { 1.09, 0.82, 1.34, 1.10, 0.50, 0.79, 0.65, 0.49, 0.24, 0.21}
- );
- /*
- * Construct the segment inelastic parameter that is C2 (iK = 2 sets it to C2), with 2nd order
- * roughness penalty derivative, and without constraint
- */
- int iK = 2;
- int iRoughnessPenaltyDerivativeOrder = 2;
- SegmentInelasticDesignControl sdic = SegmentInelasticDesignControl.Create (
- iK,
- iRoughnessPenaltyDerivativeOrder
- );
- int iPolyNumBasis = 4;
- /*
- * Basis Spline Stretch Test Using the Segment Best Fit Response
- */
- BasisSplineStretchTest (
- adblX,
- PolynomialSegmentControlParams (
- iPolyNumBasis,
- sdic
- ),
- sbfr
- );
- }
- public static final void main (
- final String[] astrArgs)
- throws Exception
- {
- RegressionSplineEstimatorTest();
- }
- }