MultiSpanAggregationEstimator.java
- package org.drip.sample.stretch;
- import java.util.*;
- import org.drip.numerical.common.FormatUtil;
- import org.drip.spline.basis.PolynomialFunctionSetParams;
- import org.drip.spline.grid.*;
- import org.drip.spline.params.*;
- import org.drip.spline.stretch.*;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- *
- * This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
- * libraries targeting analysts and developers
- * https://lakshmidrip.github.io/DRIP/
- *
- * DRIP is composed of four main libraries:
- *
- * - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
- * - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
- * - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
- * - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
- *
- * - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
- * Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
- * Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
- * Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
- * Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
- *
- * - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
- * Incorporator, Holdings Constraint, and Transaction Costs.
- *
- * - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
- *
- * - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * MultiSpanAggregationEstimator demonstrates the Construction and Usage of the Multiple Span Aggregation
- * Functionality.
- *
- * @author Lakshmi Krishnamurthy
- */
- public class MultiSpanAggregationEstimator {
- /*
- * Build Polynomial Segment Control Parameters.
- *
- * WARNING: Insufficient Error Checking, so use caution
- */
- private static final SegmentCustomBuilderControl PolynomialSegmentControlParams (
- final int iNumBasis,
- final SegmentInelasticDesignControl sdic,
- final ResponseScalingShapeControl rssc)
- throws Exception
- {
- return new SegmentCustomBuilderControl (
- MultiSegmentSequenceBuilder.BASIS_SPLINE_POLYNOMIAL,
- new PolynomialFunctionSetParams (iNumBasis),
- sdic,
- rssc,
- null
- );
- }
- public static final void main (
- final String[] astrArgs)
- throws Exception
- {
- double[] adblX = new double[] { 1.00, 1.50, 2.00, 3.00, 4.00, 5.00, 6.50, 8.00, 10.00};
- double[] adblY1 = new double[] {25.00, 20.25, 16.00, 9.00, 4.00, 1.00, 0.25, 4.00, 16.00};
- double[] adblY2 = new double[] {27.00, 22.25, 18.00, 11.00, 6.00, 3.00, 2.25, 6.00, 18.00};
- SegmentCustomBuilderControl scbc = PolynomialSegmentControlParams (
- 4,
- SegmentInelasticDesignControl.Create (2, 2),
- null
- );
- SegmentCustomBuilderControl[] aSCBC = new SegmentCustomBuilderControl[adblX.length - 1];
- for (int i = 0; i < adblX.length - 1; ++i)
- aSCBC[i] = scbc;
- MultiSegmentSequence mss1 = MultiSegmentSequenceBuilder.CreateCalibratedStretchEstimator (
- "SPLINE_STRETCH_1", // Name
- adblX, // predictors
- adblY1, // responses
- aSCBC, // Basis Segment Builder parameters
- null, // NULL segment Best Fit Response
- BoundarySettings.NaturalStandard(), // Boundary Condition - Natural
- MultiSegmentSequence.CALIBRATE // Calibrate the Stretch predictors to the responses
- );
- Span span1 = new OverlappingStretchSpan (mss1);
- MultiSegmentSequence mss2 = MultiSegmentSequenceBuilder.CreateCalibratedStretchEstimator (
- "SPLINE_STRETCH_2", // Name
- adblX, // predictors
- adblY2, // responses
- aSCBC, // Basis Segment Builder parameters
- null, // NULL segment Best Fit Response
- BoundarySettings.NaturalStandard(), // Boundary Condition - Natural
- MultiSegmentSequence.CALIBRATE // Calibrate the Stretch predictors to the responses
- );
- Span span2 = new OverlappingStretchSpan (mss2);
- List<Double> lsWeight = new ArrayList<Double>();
- lsWeight.add (0.14);
- lsWeight.add (0.71);
- List<Span> lsSpan = new ArrayList<Span>();
- lsSpan.add (span1);
- lsSpan.add (span2);
- AggregatedSpan ass = new AggregatedSpan (
- lsSpan,
- lsWeight
- );
- double dblX = 1.;
- double dblXMax = 10.;
- while (dblX <= dblXMax) {
- double dblStretchResponse = 0.14 * mss1.responseValue (dblX) + 0.71 * mss2.responseValue (dblX);
- System.out.println ("Y[" + dblX + "] " +
- FormatUtil.FormatDouble (ass.calcResponseValue (dblX), 2, 2, 1.) + " | " +
- FormatUtil.FormatDouble (dblStretchResponse, 2, 2, 1.)
- );
- dblX += 1.;
- }
- }
- }