CPGAZeroThresholdCorrelated.java
package org.drip.sample.xvadigest;
import org.drip.analytics.date.*;
import org.drip.exposure.evolver.LatentStateVertexContainer;
import org.drip.exposure.mpor.CollateralAmountEstimator;
import org.drip.exposure.universe.*;
import org.drip.measure.bridge.BrokenDateInterpolatorLinearT;
import org.drip.measure.discrete.SequenceGenerator;
import org.drip.measure.dynamics.*;
import org.drip.measure.process.DiffusionEvolver;
import org.drip.measure.realization.*;
import org.drip.measure.statistics.UnivariateDiscreteThin;
import org.drip.numerical.common.FormatUtil;
import org.drip.numerical.linearalgebra.Matrix;
import org.drip.service.env.EnvManager;
import org.drip.state.identifier.OTCFixFloatLabel;
import org.drip.xva.gross.*;
import org.drip.xva.netting.CollateralGroupPath;
import org.drip.xva.proto.*;
import org.drip.xva.settings.*;
import org.drip.xva.strategy.*;
import org.drip.xva.vertex.AlbaneseAndersen;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
*
* This file is part of DRIP, a free-software/open-source library for buy/side financial/trading model
* libraries targeting analysts and developers
* https://lakshmidrip.github.io/DRIP/
*
* DRIP is composed of four main libraries:
*
* - DRIP Fixed Income - https://lakshmidrip.github.io/DRIP-Fixed-Income/
* - DRIP Asset Allocation - https://lakshmidrip.github.io/DRIP-Asset-Allocation/
* - DRIP Numerical Optimizer - https://lakshmidrip.github.io/DRIP-Numerical-Optimizer/
* - DRIP Statistical Learning - https://lakshmidrip.github.io/DRIP-Statistical-Learning/
*
* - DRIP Fixed Income: Library for Instrument/Trading Conventions, Treasury Futures/Options,
* Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA
* Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV
* Metrics, Stochastic Evolution and Option Pricing, Interest Rate Dynamics and Option Pricing, LMM
* Extensions/Calibrations/Greeks, Algorithmic Differentiation, and Asset Backed Models and Analytics.
*
* - DRIP Asset Allocation: Library for model libraries for MPT framework, Black Litterman Strategy
* Incorporator, Holdings Constraint, and Transaction Costs.
*
* - DRIP Numerical Optimizer: Library for Numerical Optimization and Spline Functionality.
*
* - DRIP Statistical Learning: Library for Statistical Evaluation and Machine Learning.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* CPGAZeroThresholdCorrelated illustrates the Counter Party Aggregation over Netting Groups based
* Collateralized Collateral Groups with several Fix-Float Swaps under Zero Collateral Threshold, and with
* built in Factor Correlations across the Numeraires. The References are:
*
* - Burgard, C., and M. Kjaer (2014): PDE Representations of Derivatives with Bilateral Counter-party Risk
* and Funding Costs, Journal of Credit Risk, 7 (3) 1-19.
*
* - Burgard, C., and M. Kjaer (2014): In the Balance, Risk, 24 (11) 72-75.
*
* - Gregory, J. (2009): Being Two-faced over Counter-party Credit Risk, Risk 20 (2) 86-90.
*
* - Li, B., and Y. Tang (2007): Quantitative Analysis, Derivatives Modeling, and Trading Strategies in the
* Presence of Counter-party Credit Risk for the Fixed Income Market, World Scientific Publishing,
* Singapore.
*
* - Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing, Risk
* 21 (2) 97-102.
*
* @author Lakshmi Krishnamurthy
*/
public class CPGAZeroThresholdCorrelated {
private static final double[] NumeraireValueRealization (
final DiffusionEvolver deNumeraireValue,
final double dblNumeraireValueInitial,
final double dblTime,
final double dblTimeWidth,
final double[] adblRandom,
final int iNumStep)
throws Exception
{
double[] adblNumeraireValue = new double[iNumStep + 1];
adblNumeraireValue[0] = dblNumeraireValueInitial;
double[] adblTimeWidth = new double[iNumStep];
for (int i = 0; i < iNumStep; ++i)
adblTimeWidth[i] = dblTimeWidth;
JumpDiffusionEdge[] aJDE = deNumeraireValue.incrementSequence (
new JumpDiffusionVertex (
dblTime,
dblNumeraireValueInitial,
0.,
false
),
JumpDiffusionEdgeUnit.Diffusion (
adblTimeWidth,
adblRandom
),
dblTimeWidth
);
for (int j = 1; j <= iNumStep; ++j)
adblNumeraireValue[j] = aJDE[j - 1].finish();
return adblNumeraireValue;
}
private static final double[] VertexNumeraireRealization (
final DiffusionEvolver deNumeraireValue,
final double dblNumeraireValueInitial,
final double dblTime,
final double dblTimeWidth,
final double[] adblRandom,
final int iNumStep)
throws Exception
{
double[] adblNumeraireValue = new double[iNumStep + 1];
double[] adblTimeWidth = new double[iNumStep];
for (int i = 0; i < iNumStep; ++i)
adblTimeWidth[i] = dblTimeWidth;
JumpDiffusionVertex[] aJDV = deNumeraireValue.vertexSequenceReverse (
new JumpDiffusionVertex (
dblTime,
dblNumeraireValueInitial,
0.,
false
),
JumpDiffusionEdgeUnit.Diffusion (
adblTimeWidth,
adblRandom
),
adblTimeWidth
);
for (int j = 0; j <= iNumStep; ++j)
adblNumeraireValue[j] = aJDV[j].value();
return adblNumeraireValue;
}
private static final double[] ATMSwapRateOffsetRealization (
final DiffusionEvolver deATMSwapRateOffset,
final double dblATMSwapRateOffsetInitial,
final double[] adblRandom,
final double dblTime,
final double dblTimeWidth,
final int iNumStep)
throws Exception
{
double[] adblATMSwapRateOffset = new double[iNumStep + 1];
adblATMSwapRateOffset[0] = dblATMSwapRateOffsetInitial;
double[] adblTimeWidth = new double[iNumStep];
for (int i = 0; i < iNumStep; ++i)
adblTimeWidth[i] = dblTimeWidth;
JumpDiffusionEdge[] aJDE = deATMSwapRateOffset.incrementSequence (
new JumpDiffusionVertex (
dblTime,
dblATMSwapRateOffsetInitial,
0.,
false
),
JumpDiffusionEdgeUnit.Diffusion (
adblTimeWidth,
adblRandom
),
dblTimeWidth
);
for (int j = 1; j <= iNumStep; ++j)
adblATMSwapRateOffset[j] = aJDE[j - 1].finish();
return adblATMSwapRateOffset;
}
private static final double[] SwapPortfolioValueRealization (
final DiffusionEvolver deATMSwapRate,
final double dblATMSwapRateStart,
final double[] adblRandom,
final int iNumStep,
final double dblTime,
final double dblTimeWidth,
final int iNumSwap)
throws Exception
{
double[] adblSwapPortfolioValueRealization = new double[iNumStep + 1];
for (int i = 0; i < iNumStep; ++i)
adblSwapPortfolioValueRealization[i] = 0.;
for (int i = 0; i < iNumSwap; ++i) {
double[] adblATMSwapRateOffsetRealization = ATMSwapRateOffsetRealization (
deATMSwapRate,
dblATMSwapRateStart,
adblRandom,
dblTime,
dblTimeWidth,
iNumStep
);
for (int j = 0; j <= iNumStep; ++j)
adblSwapPortfolioValueRealization[j] += dblTimeWidth * (iNumStep - j) * adblATMSwapRateOffsetRealization[j];
}
return adblSwapPortfolioValueRealization;
}
private static final void UDTDump (
final String strHeader,
final JulianDate[] adtVertexNode,
final UnivariateDiscreteThin[] aUDT)
throws Exception
{
System.out.println ("\t|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|");
System.out.println (strHeader);
System.out.println ("\t|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|");
String strDump = "\t| DATE =>" ;
for (int i = 0; i < adtVertexNode.length; ++i)
strDump = strDump + " " + adtVertexNode[i] + " |";
System.out.println (strDump);
System.out.println ("\t|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|");
strDump = "\t| AVERAGE =>";
for (int j = 0; j < aUDT.length; ++j)
strDump = strDump + " " + FormatUtil.FormatDouble (aUDT[j].average(), 2, 4, 1.) + " |";
System.out.println (strDump);
strDump = "\t| MAXIMUM =>";
for (int j = 0; j < aUDT.length; ++j)
strDump = strDump + " " + FormatUtil.FormatDouble (aUDT[j].maximum(), 2, 4, 1.) + " |";
System.out.println (strDump);
strDump = "\t| MINIMUM =>";
for (int j = 0; j < aUDT.length; ++j)
strDump = strDump + " " + FormatUtil.FormatDouble (aUDT[j].minimum(), 2, 4, 1.) + " |";
System.out.println (strDump);
strDump = "\t| ERROR =>";
for (int j = 0; j < aUDT.length; ++j)
strDump = strDump + " " + FormatUtil.FormatDouble (aUDT[j].error(), 2, 4, 1.) + " |";
System.out.println (strDump);
System.out.println ("\t|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|");
}
private static final void UDTDump (
final String strHeader,
final UnivariateDiscreteThin udt)
throws Exception
{
System.out.println (
strHeader +
FormatUtil.FormatDouble (udt.average(), 3, 2, 100.) + "% | " +
FormatUtil.FormatDouble (udt.maximum(), 3, 2, 100.) + "% | " +
FormatUtil.FormatDouble (udt.minimum(), 3, 2, 100.) + "% | " +
FormatUtil.FormatDouble (udt.error(), 3, 2, 100.) + "% ||"
);
}
public static final void main (
final String[] astrArgs)
throws Exception
{
EnvManager.InitEnv ("");
int iNumStep = 10;
int iNumSwap = 10;
double dblTime = 5.;
int iNumPath = 10000;
double dblATMSwapRateOffsetDrift = 0.0;
double dblATMSwapRateOffsetVolatility = 0.25;
double dblATMSwapRateOffsetStart = 0.;
double dblOvernightNumeraireDrift = 0.004;
double dblOvernightNumeraireVolatility = 0.02;
double dblOvernightNumeraireInitial = 1.;
double dblCSADrift = 0.01;
double dblCSAVolatility = 0.05;
double dblCSAInitial = 1.;
double dblBankHazardRateDrift = 0.002;
double dblBankHazardRateVolatility = 0.20;
double dblBankHazardRateInitial = 0.015;
double dblBankRecoveryRateDrift = 0.002;
double dblBankRecoveryRateVolatility = 0.02;
double dblBankRecoveryRateInitial = 0.40;
double dblCounterPartyHazardRateDrift = 0.002;
double dblCounterPartyHazardRateVolatility = 0.30;
double dblCounterPartyHazardRateInitial = 0.030;
double dblCounterPartyRecoveryRateDrift = 0.002;
double dblCounterPartyRecoveryRateVolatility = 0.02;
double dblCounterPartyRecoveryRateInitial = 0.30;
double dblBankFundingSpreadDrift = 0.00002;
double dblBankFundingSpreadVolatility = 0.002;
double dblCounterPartyFundingSpreadDrift = 0.000022;
double dblCounterPartyFundingSpreadVolatility = 0.0022;
double[][] aadblCorrelation = new double[][] {
{1.00, 0.00, 0.03, 0.07, 0.04, 0.05, 0.08, 0.00, 0.00}, // PORTFOLIO
{0.00, 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00}, // OVERNIGHT
{0.03, 0.00, 1.00, 0.26, 0.33, 0.21, 0.35, 0.13, 0.00}, // CSA
{0.07, 0.00, 0.26, 1.00, 0.45, -0.17, 0.07, 0.77, 0.00}, // BANK HAZARD
{0.04, 0.00, 0.33, 0.45, 1.00, -0.22, -0.54, 0.58, 0.00}, // COUNTER PARTY HAZARD
{0.05, 0.00, 0.21, -0.17, -0.22, 1.00, 0.47, -0.23, 0.00}, // BANK RECOVERY
{0.08, 0.00, 0.35, 0.07, -0.54, 0.47, 1.00, 0.01, 0.00}, // COUNTER PARTY RECOVERY
{0.00, 0.00, 0.13, 0.77, 0.58, -0.23, 0.01, 1.00, 0.00}, // BANK FUNDING SPREAD
{0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00} // COUNTER PARTY FUNDING SPREAD
};
JulianDate dtSpot = DateUtil.Today();
PositionGroupSpecification positionGroupSpecification = PositionGroupSpecification.FixedThreshold (
"FIXEDTHRESHOLD",
0.,
0.,
PositionReplicationScheme.ALBANESE_ANDERSEN_VERTEX,
BrokenDateScheme.SQUARE_ROOT_OF_TIME,
0.,
CloseOutScheme.ISDA_92
);
double dblTimeWidth = dblTime / iNumStep;
JulianDate[] adtVertex = new JulianDate[iNumStep + 1];
double[][] aadblPortfolioValue = new double[iNumPath][iNumStep + 1];
MonoPathExposureAdjustment[] aMPEA = new MonoPathExposureAdjustment[iNumPath];
double dblBankFundingSpreadInitial = dblBankHazardRateInitial / (1. - dblBankRecoveryRateInitial);
double dblCounterPartyFundingSpreadInitial = dblCounterPartyHazardRateInitial / (1. - dblCounterPartyRecoveryRateInitial);
DiffusionEvolver deATMSwapRateOffset = new DiffusionEvolver (
DiffusionEvaluatorLinear.Standard (
dblATMSwapRateOffsetDrift,
dblATMSwapRateOffsetVolatility
)
);
DiffusionEvolver deOvernightNumeraire = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblOvernightNumeraireDrift,
dblOvernightNumeraireVolatility
)
);
DiffusionEvolver deCSA = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblCSADrift,
dblCSAVolatility
)
);
DiffusionEvolver deBankHazardRate = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblBankHazardRateDrift,
dblBankHazardRateVolatility
)
);
DiffusionEvolver deCounterPartyHazardRate = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblCounterPartyHazardRateDrift,
dblCounterPartyHazardRateVolatility
)
);
DiffusionEvolver deBankRecoveryRate = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblBankRecoveryRateDrift,
dblBankRecoveryRateVolatility
)
);
DiffusionEvolver deCounterPartyRecoveryRate = new DiffusionEvolver (
DiffusionEvaluatorLogarithmic.Standard (
dblCounterPartyRecoveryRateDrift,
dblCounterPartyRecoveryRateVolatility
)
);
DiffusionEvolver deBankFundingSpread = new DiffusionEvolver (
DiffusionEvaluatorLinear.Standard (
dblBankFundingSpreadDrift,
dblBankFundingSpreadVolatility
)
);
DiffusionEvolver deCounterPartyFundingSpread = new DiffusionEvolver (
DiffusionEvaluatorLinear.Standard (
dblCounterPartyFundingSpreadDrift,
dblCounterPartyFundingSpreadVolatility
)
);
for (int i = 0; i < iNumPath; ++i) {
double[][] aadblNumeraire = Matrix.Transpose (
SequenceGenerator.GaussianJoint (
iNumStep,
aadblCorrelation
)
);
aadblPortfolioValue[i] = SwapPortfolioValueRealization (
deATMSwapRateOffset,
dblATMSwapRateOffsetStart,
aadblNumeraire[0],
iNumStep,
dblTime,
dblTimeWidth,
iNumSwap
);
double[] adblOvernightNumeraire = VertexNumeraireRealization (
deOvernightNumeraire,
dblOvernightNumeraireInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[1],
iNumStep
);
double[] adblCSA = VertexNumeraireRealization (
deCSA,
dblCSAInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[2],
iNumStep
);
double[] adblBankHazardRate = NumeraireValueRealization (
deBankHazardRate,
dblBankHazardRateInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[3],
iNumStep
);
double[] adblCounterPartyHazardRate = NumeraireValueRealization (
deCounterPartyHazardRate,
dblCounterPartyHazardRateInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[4],
iNumStep
);
double[] adblBankRecoveryRate = NumeraireValueRealization (
deBankRecoveryRate,
dblBankRecoveryRateInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[5],
iNumStep
);
double[] adblCounterPartyRecoveryRate = NumeraireValueRealization (
deCounterPartyRecoveryRate,
dblCounterPartyRecoveryRateInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[6],
iNumStep
);
double[] adblBankFundingSpread = NumeraireValueRealization (
deBankFundingSpread,
dblBankFundingSpreadInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[7],
iNumStep
);
double[] adblCounterPartyFundingSpread = NumeraireValueRealization (
deCounterPartyFundingSpread,
dblCounterPartyFundingSpreadInitial,
dblTime,
dblTimeWidth,
aadblNumeraire[8],
iNumStep
);
JulianDate dtStart = dtSpot;
MarketVertex[] aMV = new MarketVertex [iNumStep + 1];
double dblValueStart = dblTime * dblATMSwapRateOffsetStart;
AlbaneseAndersen[] aHGVR = new AlbaneseAndersen[iNumStep + 1];
for (int j = 0; j <= iNumStep; ++j)
{
LatentStateVertexContainer latentStateVertexContainer = new LatentStateVertexContainer();
latentStateVertexContainer.add (
OTCFixFloatLabel.Standard ("USD-3M-10Y"),
Double.NaN
);
aMV[j] = MarketVertex.Nodal (
adtVertex[j] = dtSpot.addMonths (6 * j),
dblOvernightNumeraireDrift,
adblOvernightNumeraire[j],
dblCSADrift,
adblCSA[j],
new MarketVertexEntity (
Math.exp (-0.5 * adblBankHazardRate[j] * j),
adblBankHazardRate[j],
adblBankRecoveryRate[j],
adblBankFundingSpread[j],
Math.exp (-0.5 * adblBankHazardRate[j] * (1. - adblBankRecoveryRate[j]) * (iNumStep - j)),
Double.NaN,
Double.NaN,
Double.NaN
),
new MarketVertexEntity (
Math.exp (-0.5 * adblCounterPartyHazardRate[j] * j),
adblCounterPartyHazardRate[j],
adblCounterPartyRecoveryRate[j],
adblCounterPartyFundingSpread[j],
Math.exp (-0.5 * adblCounterPartyHazardRate[j] * (1. - adblCounterPartyRecoveryRate[j]) * (iNumStep - j)),
Double.NaN,
Double.NaN,
Double.NaN
),
latentStateVertexContainer
);
JulianDate dtEnd = adtVertex[j];
double dblCollateralBalance = 0.;
double dblValueEnd = aadblPortfolioValue[i][j];
if (0 != j) {
CollateralAmountEstimator hae = new CollateralAmountEstimator (
positionGroupSpecification,
new BrokenDateInterpolatorLinearT (
dtStart.julian(),
dtEnd.julian(),
dblValueStart,
dblValueEnd
),
Double.NaN
);
dblCollateralBalance = hae.postingRequirement (dtEnd);
}
aHGVR[j] = new AlbaneseAndersen (
adtVertex[j],
aadblPortfolioValue[i][j],
0.,
dblCollateralBalance
);
dtStart = dtEnd;
dblValueStart = dblValueEnd;
}
MarketPath mp = MarketPath.FromMarketVertexArray (aMV);
CollateralGroupPath[] aHGP = new CollateralGroupPath[] {
new CollateralGroupPath (
aHGVR,
mp
)
};
aMPEA[i] = new MonoPathExposureAdjustment (
new AlbaneseAndersenFundingGroupPath[] {
new AlbaneseAndersenFundingGroupPath (
new AlbaneseAndersenNettingGroupPath[] {
new AlbaneseAndersenNettingGroupPath (
aHGP,
mp
)
},
mp
)
}
);
}
ExposureAdjustmentAggregator eaa = new ExposureAdjustmentAggregator (aMPEA);
ExposureAdjustmentDigest ead = eaa.digest();
System.out.println();
UDTDump (
"\t| COLLATERALIZED EXPOSURE |",
eaa.vertexDates(),
ead.collateralizedExposure()
);
UDTDump (
"\t| UNCOLLATERALIZED EXPOSURE |",
eaa.vertexDates(),
ead.uncollateralizedExposure()
);
UDTDump (
"\t| COLLATERALIZED EXPOSURE PV |",
eaa.vertexDates(),
ead.collateralizedExposurePV()
);
UDTDump (
"\t| UNCOLLATERALIZED EXPOSURE PV |",
eaa.vertexDates(),
ead.uncollateralizedExposurePV()
);
UDTDump (
"\t| COLLATERALIZED POSITIVE EXPOSURE PV |",
eaa.vertexDates(),
ead.collateralizedPositiveExposure()
);
UDTDump (
"\t| UNCOLLATERALIZED POSITIVE EXPOSURE PV |",
eaa.vertexDates(),
ead.uncollateralizedPositiveExposure()
);
UDTDump (
"\t| COLLATERALIZED NEGATIVE EXPOSURE PV |",
eaa.vertexDates(),
ead.collateralizedNegativeExposure()
);
UDTDump (
"\t| UNCOLLATERALIZED NEGATIVE EXPOSURE PV |",
eaa.vertexDates(),
ead.uncollateralizedNegativeExposure()
);
System.out.println();
System.out.println ("\t||-----------------------------------------------------||");
System.out.println ("\t|| UCVA CVA FTDCVA DVA FCA UNIVARIATE THIN STATISTICS ||");
System.out.println ("\t||-----------------------------------------------------||");
System.out.println ("\t|| L -> R: ||");
System.out.println ("\t|| - Path Average ||");
System.out.println ("\t|| - Path Maximum ||");
System.out.println ("\t|| - Path Minimum ||");
System.out.println ("\t|| - Monte Carlo Error ||");
System.out.println ("\t||-----------------------------------------------------||");
UDTDump (
"\t|| UCVA => ",
ead.ucva()
);
UDTDump (
"\t|| FTDCVA => ",
ead.ftdcva()
);
UDTDump (
"\t|| CVA => ",
ead.cva()
);
UDTDump (
"\t|| CVACL => ",
ead.cvacl()
);
UDTDump (
"\t|| DVA => ",
ead.dva()
);
UDTDump (
"\t|| FVA => ",
ead.fva()
);
UDTDump (
"\t|| FDA => ",
ead.fda()
);
UDTDump (
"\t|| FCA => ",
ead.fca()
);
UDTDump (
"\t|| FBA => ",
ead.fba()
);
UDTDump (
"\t|| SFVA => ",
ead.sfva()
);
System.out.println ("\t||-----------------------------------------------------||");
UDTDump (
"\t|| Total => ",
ead.totalVA()
);
System.out.println ("\t||-----------------------------------------------------||");
System.out.println();
EnvManager.TerminateEnv();
}
}