GlivenkoCantelliFunctionSupremum.java
package org.drip.sequence.custom;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
* FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three main modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning Library
* - Numerical Optimizer Library
* - Machine Learning Library
* - Spline Builder Library
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>GlivenkoCantelliFunctionSupremum</i> contains the Implementation of the Supremum Class Objective
* Function dependent on Multivariate Random Variables where the Multivariate Function is a Linear
* Combination of Bounded Univariate Functions acting on each Random Variate.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/custom">Custom</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class GlivenkoCantelliFunctionSupremum extends org.drip.sequence.functional.MultivariateRandom
implements org.drip.sequence.functional.SeparableMultivariateRandom {
private double[] _adblWeight = null;
private org.drip.sequence.functional.FunctionSupremumUnivariateRandom _fsur = null;
/**
* Construct an Instance of GlivenkoCantelliFunctionSupremum from the Sample
*
* @param fsur The Supremum Univariate Random Function
* @param iNumSample Number of Empirical Samples
*
* @return The GlivenkoCantelliFunctionSupremum Instance
*/
public static final GlivenkoCantelliFunctionSupremum Create (
final org.drip.sequence.functional.FunctionSupremumUnivariateRandom fsur,
final int iNumSample)
{
try {
return new GlivenkoCantelliFunctionSupremum (fsur,
org.drip.analytics.support.Helper.NormalizedEqualWeightedArray (iNumSample));
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* GlivenkoCantelliFunctionSupremum Constructor
*
* @param fsur The Supremum Univariate Random Function
* @param adblWeight Array of Variable Weights
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public GlivenkoCantelliFunctionSupremum (
final org.drip.sequence.functional.FunctionSupremumUnivariateRandom fsur,
final double[] adblWeight)
throws java.lang.Exception
{
if (null == (_adblWeight = adblWeight) || 0 == _adblWeight.length || null == (_fsur = fsur))
throw new java.lang.Exception ("GlivenkoCantelliFunctionSupremum ctr: Invalid Inputs");
}
/**
* Retrieve the Supremum Univariate Random Function
*
* @return The Supremum Univariate Random Function
*/
public org.drip.sequence.functional.FunctionSupremumUnivariateRandom separableUnivariateRandom()
{
return _fsur;
}
/**
* Retrieve the Weights
*
* @return The Weights
*/
public double[] weights()
{
return _adblWeight;
}
@Override public int dimension()
{
return org.drip.function.definition.RdToR1.DIMENSION_NOT_FIXED;
}
@Override public double evaluate (
final double[] adblVariate)
throws java.lang.Exception
{
double dblValue = 0.;
int iNumVariate = adblVariate.length;
if (_adblWeight.length < iNumVariate)
throw new java.lang.Exception ("GlivenkoCantelliFunctionSupremum::evaluate => Invalid Inputs");
for (int i = 0; i < iNumVariate; ++i)
dblValue += _adblWeight[i] * _fsur.evaluate (adblVariate[i]);
return dblValue;
}
@Override public double targetVariateVariance (
final int iTargetVariateIndex)
throws java.lang.Exception
{
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssam = _fsur.sequenceMetrics();
if (null == ssam)
throw new java.lang.Exception
("GlivenkoCantelliFunctionSupremum::targetVariateVariance => Cannot calculate Target Variate Metrics");
return _adblWeight[iTargetVariateIndex] * ssam.empiricalVariance();
}
}