KernelDensityEstimationL1.java
package org.drip.sequence.custom;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
* FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three main modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning Library
* - Numerical Optimizer Library
* - Machine Learning Library
* - Spline Builder Library
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>KernelDensityEstimationL1</i> implements the L1 Error Scheme Estimation for a Multivariate Kernel
* Density Estimator with Focus on establishing targeted Variate-Specific and Agnostic Bounds.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/custom">Custom</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class KernelDensityEstimationL1 extends org.drip.sequence.functional.BoundedMultivariateRandom {
private int _iSampleSize = -1;
private double _dblSmoothingParameter = java.lang.Double.NaN;
private org.drip.function.definition.R1ToR1 _auKernel = null;
private org.drip.function.definition.R1ToR1 _auResponse = null;
/**
* KernelDensityEstimationL1 Constructor
*
* @param auKernel The Kernel Function
* @param dblSmoothingParameter The Smoothing Parameter
* @param iSampleSize The Sample Size
* @param auResponse The Response Function
*
* @throws java.lang.Exception Thrown if Inputs are Invalid
*/
public KernelDensityEstimationL1 (
final org.drip.function.definition.R1ToR1 auKernel,
final double dblSmoothingParameter,
final int iSampleSize,
final org.drip.function.definition.R1ToR1 auResponse)
throws java.lang.Exception
{
if (null == (_auKernel = auKernel) || !org.drip.numerical.common.NumberUtil.IsValid
(_dblSmoothingParameter = dblSmoothingParameter) || 0 >= (_iSampleSize = iSampleSize) || null ==
(_auResponse = auResponse))
throw new java.lang.Exception ("KernelDensityEstimationL1 Constructor => Invalid Inputs!");
}
/**
* Retrieve the Kernel Function
*
* @return The Kernel Function
*/
public org.drip.function.definition.R1ToR1 kernelFunction()
{
return _auKernel;
}
/**
* Retrieve the Smoothing Parameter
*
* @return The Smoothing Parameter
*/
public double smoothingParameter()
{
return _dblSmoothingParameter;
}
/**
* Retrieve the Sample Size
*
* @return The Sample Size
*/
public int sampleSize()
{
return _iSampleSize;
}
/**
* Retrieve the Response Function
*
* @return The Response Function
*/
public org.drip.function.definition.R1ToR1 responseFunction()
{
return _auResponse;
}
@Override public int dimension()
{
return org.drip.function.definition.RdToR1.DIMENSION_NOT_FIXED;
}
@Override public double evaluate (
final double[] adblVariate)
throws java.lang.Exception
{
double dblMinVariate = org.drip.numerical.common.NumberUtil.Minimum (adblVariate);
double dblMaxVariate = org.drip.numerical.common.NumberUtil.Maximum (adblVariate);
double dblKernelIntegral = 0.;
int iNumVariate = adblVariate.length;
for (int i = 0; i < iNumVariate; ++i)
dblKernelIntegral += _auKernel.integrate ((dblMinVariate - adblVariate[i]) /
_dblSmoothingParameter, (dblMaxVariate - adblVariate[i]) / _dblSmoothingParameter);
return dblKernelIntegral / (_iSampleSize * _dblSmoothingParameter) - _auResponse.integrate
(dblMinVariate, dblMaxVariate);
}
@Override public double targetVariateVarianceBound (
final int iTargetVariateIndex)
throws java.lang.Exception
{
return 4. / (_iSampleSize * _iSampleSize);
}
}