KernelDensityEstimationL1.java
- package org.drip.sequence.custom;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>KernelDensityEstimationL1</i> implements the L1 Error Scheme Estimation for a Multivariate Kernel
- * Density Estimator with Focus on establishing targeted Variate-Specific and Agnostic Bounds.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/custom">Custom</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class KernelDensityEstimationL1 extends org.drip.sequence.functional.BoundedMultivariateRandom {
- private int _iSampleSize = -1;
- private double _dblSmoothingParameter = java.lang.Double.NaN;
- private org.drip.function.definition.R1ToR1 _auKernel = null;
- private org.drip.function.definition.R1ToR1 _auResponse = null;
- /**
- * KernelDensityEstimationL1 Constructor
- *
- * @param auKernel The Kernel Function
- * @param dblSmoothingParameter The Smoothing Parameter
- * @param iSampleSize The Sample Size
- * @param auResponse The Response Function
- *
- * @throws java.lang.Exception Thrown if Inputs are Invalid
- */
- public KernelDensityEstimationL1 (
- final org.drip.function.definition.R1ToR1 auKernel,
- final double dblSmoothingParameter,
- final int iSampleSize,
- final org.drip.function.definition.R1ToR1 auResponse)
- throws java.lang.Exception
- {
- if (null == (_auKernel = auKernel) || !org.drip.numerical.common.NumberUtil.IsValid
- (_dblSmoothingParameter = dblSmoothingParameter) || 0 >= (_iSampleSize = iSampleSize) || null ==
- (_auResponse = auResponse))
- throw new java.lang.Exception ("KernelDensityEstimationL1 Constructor => Invalid Inputs!");
- }
- /**
- * Retrieve the Kernel Function
- *
- * @return The Kernel Function
- */
- public org.drip.function.definition.R1ToR1 kernelFunction()
- {
- return _auKernel;
- }
- /**
- * Retrieve the Smoothing Parameter
- *
- * @return The Smoothing Parameter
- */
- public double smoothingParameter()
- {
- return _dblSmoothingParameter;
- }
- /**
- * Retrieve the Sample Size
- *
- * @return The Sample Size
- */
- public int sampleSize()
- {
- return _iSampleSize;
- }
- /**
- * Retrieve the Response Function
- *
- * @return The Response Function
- */
- public org.drip.function.definition.R1ToR1 responseFunction()
- {
- return _auResponse;
- }
- @Override public int dimension()
- {
- return org.drip.function.definition.RdToR1.DIMENSION_NOT_FIXED;
- }
- @Override public double evaluate (
- final double[] adblVariate)
- throws java.lang.Exception
- {
- double dblMinVariate = org.drip.numerical.common.NumberUtil.Minimum (adblVariate);
- double dblMaxVariate = org.drip.numerical.common.NumberUtil.Maximum (adblVariate);
- double dblKernelIntegral = 0.;
- int iNumVariate = adblVariate.length;
- for (int i = 0; i < iNumVariate; ++i)
- dblKernelIntegral += _auKernel.integrate ((dblMinVariate - adblVariate[i]) /
- _dblSmoothingParameter, (dblMaxVariate - adblVariate[i]) / _dblSmoothingParameter);
- return dblKernelIntegral / (_iSampleSize * _dblSmoothingParameter) - _auResponse.integrate
- (dblMinVariate, dblMaxVariate);
- }
- @Override public double targetVariateVarianceBound (
- final int iTargetVariateIndex)
- throws java.lang.Exception
- {
- return 4. / (_iSampleSize * _iSampleSize);
- }
- }